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1. Introduction 

 The objectives of this research are to test how different “human drivers of development” 

can be incorporated into the SLEUTH urban model and whether they can be utilized to improve 

the models predictive capabilities.  SLEUTH is a cellular automata model that applies transition 

rules to the states of a gridded series of cells, and in this case the transition is that from 

undeveloped to developed land cover, otherwise known as urbanization (Clarke, 1995).  The 

model was chosen due to its successful implementation in numerous land use change studies of 

similar nature and scale (Clarke, et al., 1997; Jantz, et al., 2009; Silva and Clarke, 2002; Oguz, 

2007; Onsted and Clarke, 2011; Xian, 2005).  Implementation of the study focuses on the 

changes in land cover experienced within the Baltimore Metropolitan Region (BMR). 

 To understand this study one must first be provided with a basic overview of SLEUTH.  

First utilized to model urban land cover in the San Francisco Bay area (Clarke, et al., 1997), 

SLEUTH is an acronym for the spatial datasets required as inputs from the user to run the model.  

These datasets are, in order, Slope gradient, Land use, Exclusion, Urban extent, Transportation, 

and Hillshade.  In order to utilize these datasets, they must be rasterized within a GIS to be 

compatible with the grid format required.  Additionally, the urban extent must be a 

reclassification of land cover into only two classes, urban, and nonurban.  A benefit from having 

data in this format is that SLEUTH and other CA models have results that can be visualized, as 

well as quantified (Oguz, 2007), both of which benefited this analysis. 
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A multi-step process is required to accurately prepare the model for predicting geospatial 

distributions of urban and nonurban lands throughout the study area.  The first, and widely 

acknowledged step, is calibration.  Calibration allows SLEUTH to analyze the historic time 

series of land cover and determine which of the programs growth rules are being applied over 

time, and the value of their influence.  The output data from SLEUTH at this point is a series of 

goodness of fit statistics used to evaluate how well the model is interpreting historic growth.  The 

fit statistics used in this research include fractional differences between area, edge, and cluster 

growth between mapped and modeled urbanization.  This process can be time consuming due to 

the labor and computational time needed by SLEUTH.  In this research we add to the calibration 

process by also validating our model with an independent time series, allowed for by a string of 

four time steps of urban coverage data.  Validation allows us to test the predictive capabilities of 

SLEUTH against a known time step which permits some evaluation of how the model is 

performing before ‘blindly’ predicting growth rates into the future. 

 The last step in modeling is the predictive state.  Utilizing the historic trends and values 

from growth rules a surface representing the future distributions of urban and non-urban 

coverage can be generated across the study area.  It is important to note that the user can 

influence this process to create different scenarios or outcomes as the future is unknown and 

trends area anything but linear.  In past studies multiple scenarios have been utilized to evaluate 

land use policy decisions, provide a range of possible future growth across a region, and more 

recently, to even evaluate portions of the SLEUTH model, like the differential assessment of 

lands. 
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As touched upon earlier, during SLEUTH processes the model applies transition rules to 

a grid of cells, determined to be urban or nonurban, and simulates their change over time using 

historic trends and input from the user.  Factors influencing this transition or change include a 

series of growth rules, and the ‘Exclusion’ layer.  Both the growth rules and the exclusion layer 

will be covered in depth later in the research, but it is important to point out another addition.  

While testing drivers of human development this study utilized three different datasets to create 

what is considered an exclusion/attraction layer.  While in the past the excluded layer has only 

been used to repel growth from certain areas, a modification of this layer allows for both the 

repellant and attraction of growth to different areas.  The hope is that by testing different drivers 

the performance of the model will be improved by incorporating factors believed to be 

influencing development within the BMR today. 

Testing of drivers will be conducted upon a base excluded layer, which provides minimal 

information on protected lands; the sewer/water infrastructure, assumed to be a determinant of 

urban growth; and population/employment changes represented at a broad scale in Regional 

Planning Districts (RPDs).  Recent studies have shown that the base excluded layer does indeed 

improve the model (Onsted and Clarke, In Press), but this research plans to find even better 

datasets for model improvement and advancement.  By using a more intensive calibration, 

validation, and prediction approach in addition to the exclusion/attraction layers portraying 

drivers of development, our objective can be accomplished. 

2. Study Area 

 The Baltimore Metropolitan Region (Figure 1) provides an ideal location to test metrics 

of land use change.  Consisting of Baltimore City and five surrounding counties (Baltimore, 
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Howard, Harford, Carroll, and Anne Arundel) the area contains both rural and urban expanses.  

Over the previous years the study site has also experienced increasing amounts of 

suburbanization and low density development (Jantz and Goetz, 2005) making it a prime location 

to test SLEUTH’s performance with human drivers of development.  Figure 2 displays the 

percentage of urban coverage within RPDs as well as the difference in urban coverage calculated 

between 1984 and 2006. 

 Urbanization of the Baltimore Metropolitan Region seems to be occurring for two 

reasons.  First, the City of Baltimore has been experiencing great decline in the number of 

residents over the past decades.  A decrease from nearly one million residents in 1950 to only 

600 thousand in 2004 portrays mass exodus from the urban core.  During that same period the 

neighboring, suburban, Baltimore County experienced a population increases of more than 

179%, as the number of residents grew from a quarter to three quarters of a million (Short, 

2007).  Not only were people relocating from the city to its surrounding suburbs, but the 

population of the metropolitan region as a whole was on the rise.  The Baltimore PMSA grew by 

23% during the fifty-year span, adding nearly half a million residents (Hanlon, et al., 2010). 

 New human settlement patterns, in its sprawling/haphazard nature, exact an enormous 

toll on the nature of land cover across the metropolitan region.  Transitions to developed/urban 

lands affect agricultural land uses particularly hard.  Many counties within the study area had 

high compositions of agricultural lands, usually greater than 50% of total land coverage at the 

middle of the last century.  By the turn of the 21
st
 century however, most had lost more than half 

of these lands to urban development (Short, 2007).  It was not until the late 90’s that the state of 

Maryland realized the threat that exurban sprawl posed to valuable resource lands, causing it to 
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pass legislation limiting low density development.  The most notable measures of the statewide 

smart growth policy act aimed at curbing sprawl were Priority Funding Areas and Rural Legacy 

Areas (Jantz and Goetz, 2005).  These attempted to guide development to existing communities 

while protecting farmland and open space by purchasing development rights and targeting 

funding towards already developed areas (Hanlon, et al., 2010).  These targeted areas have a high 

correlation the sewer/water driver tested during this study, and test the assumption that existing 

infrastructure attracts future expansion. 

The population/employment driver of development should also be mentioned in this 

section as they are linked to Regional Planning Districts.  Regional Planning Districts are 

geographic areas comprised of one or more census tracts, and used mainly for transportation 

planning (BMC, 2008).   Data was gathered by the Baltimore Metropolitan Council and the 

Cooperative Forecasting Group made up of economists, demographers, and planners within the 

State of Maryland’s planning institutions.  Published by this group are population, household, 

and employment forecasts for the study area that are derived from Census reports, surveys, 

economic analyses, and finally policies that affect land cover change.  Within our study area are 

94 RPDs from which population/employment statistics were obtained for this research.  It is 

important to note that several regional planning districts within the central Baltimore City were 

removed because simulating development trends was difficult as the area already has greater 

than 90% impervious surface cover, and population/employment trends do not correlate to those 

in the suburbs where much of the study focuses. 

3 Data and Methods 

3.1 SLEUTH model 
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The SLEUTH cellular automata model relies on growth rules to simulate historic growth 

and forecast future growth scenarios.  The four growth rules are: spontaneous new growth; new 

spreading center; edge growth; and road influenced growth (Clarke, et al., 1997).  Spontaneous 

new growth acts much the same as exurban development today, as it is located outside of the 

existing urban centers in rural hinterlands.  An example of new spreading center growth is the 

establishment and expansion of a new housing development or shopping mall.  Edge growth is 

simply the continued expansion of existing centers of urban growth, and road influenced growth 

is that which occurs in proximity to existing transportation networks. 

The aforementioned growth rules or types correspond to a set of coefficients that range in 

value from 0 to 100, and indicate how much of an influence the different growth types have 

across the study area. Controlling coefficients of growth are diffusion, breed, spread, road 

gravity, and slope resistance.  For the most part these coefficients match up with one of the 

growth types: spontaneous growth is managed by the diffusion coefficient; edge by the spread 

coefficient; new spreading center by the breed coefficient.  Road influenced growth is controlled 

by multiple coefficients consisting of road-gravity, dispersion, and breed.  The final growth type 

and coefficient is slope resistance.  This affects how likely growth is to extend onto steeper 

slopes.  The exclusion/attraction layer can play a role in this decision as well.  Utilized to 

increase or decrease the probability of development, the layer can prevent, or make unlikely, the 

occurrence of growth in areas such as protected lands, agricultural easements, and rivers/water 

bodies. In most previous SLEUTH studies, 0 correlated to neutral growth opportunity while 100 

meant no growth could occur.  This study however moves the neutral value to 50, making areas 

assigned a value of 0 an attractor, while 100 remains constant as a growth repellant.   
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Besides growth rules and coefficients there is another factor influencing how SLEUTH 

creates and predicts where development will occur.  The model has a self-modification feature, 

also known as “boom and bust” which changes the rate at which growth is occurring. This 

function is initialized when growth rates shift above (boom) or below (bust) critical thresholds 

established by the user.  If rapid growth is occurring the model will activate a boom phase where 

growth parameters are multiplied by a value great than one, and if little growth is occurring, or 

busting, the parameters will be multiplied by a value less than one.  This allows SLEUTH to 

simulate dynamic growth rates over time, so that growth rates replicate the typical S-curve of 

urbanization and population growth (Silva and Clarke, 2002). 

3.2 Changes to the SLEUTH model 

While the underlying growth processes modeled by SLEUTH have remained unchanged, 

there have been some advances to the system and its programming over the years.  The more 

recent SLEUTH-3r model attempts to improve the system by addressing several limitations of 

the original model (Jantz, et al., 2009).  These limitations include an over prediction of edge 

growth when dealing with fine resolution imagery, like that from the Chesapeake Bay Watershed 

Land Cover Dataset (CBWLCD) (USGS, 2010) used in this study.  The original SLEUTH model 

also required four historic datasets for calibration.  These datasets were required because 

SLEUTH’s performance measures were based on regression analyses, and the calculation of the 

coefficient of determination requires a minimum of four data points. Reliance on the r
2
 values 

sometimes lead to unintended under/over prediction in the model.  Also when running 

simulations, especially during the calibration processes, SLEUTH had extensive memory and 

processing requirements.  
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The SLEUTH-3r model addressed some of these problems through the modification of 

the code and modeling process.  It allowed for users to set a multiplier for the diffusion 

coefficient that controls edge growth (Jantz and Goetz, 2005), preventing a bias for that type of 

development occurring in the original version, and allowing diffusion to take a larger role in 

some situations.  Rather than being a constant value in every type of scenario, it can be tailored 

towards individual patterns of development.  The changes also allowed for decreased numbers of 

historic control points.  While one formerly needed four time steps to run the model, it can now 

successfully run with only two since SLEUTH-3r calculates fit statistics using ratios of 

difference between the modeled and actual urban values, rather than using the coefficient of 

determination. However, if one can still provide four control points they receive additional 

calculations presenting statistics of modeled versus actual urban footprints.  Further information 

provided by the model were a series of ratios for the fit statistics, in addition to the usual number 

of urban pixels, number of edge pixels, number of clusters, cluster size, and various other 

calculations.  Lastly, some streamlining of the model was done to improve SLEUTH’s memory 

demands and the speed at which it processed its computations (Jantz, et al., 2009).  

3.3 Data requirements 

As mentioned earlier, the main datasets required for SLEUTH to perform its operations 

include a time series of land use and urban data, a DEM, a transportation layer, and the 

exclusion/attraction layer.  For this study the land cover and urban datasets were acquired from 

the CBWLCD.  Collected in 1984, 1992, 2001, and 2006, these Landsat-derived datasets 

provided the most accurate and up-to-date land use classifications for the study area.  The 

accuracy comes from this data set’s ability to capture low density development in its “developed 
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open space” category. Low density development is sometimes overlooked and/or misclassified in 

other instances of land cover data sets derived from remotely sensed satellite imagery.  Capturing 

the low density development in the exurban counties throughout the study area which 

experienced large quantities of dispersed growth (Jantz and Goetz, 2007) over the past decade, 

SLEUTH is able to more realistically simulate urban growth patterns utilizing the urban land 

cover footprints provided.  The datasets were divided into 16 different land use classifications 

(Anderson, et al., 1976).  For this study we considered developed land classes to be urban areas 

thus contributing to later forecasting of growth, all other natural/agricultural areas were open to 

development when not taking other layers like slope gradient and the exclusion/attraction layers 

into account. 

The transportation layer used in the SLEUTH analysis contains U.S. and Maryland State 

highways, interstate highways, and important hand-selected county roads.  After compiling the 

line features a conversion to raster format was needed to make them recognizable to the program.  

The slope layer was established for the study area using the USGS National Elevation Dataset 

(NED). By applying the slope tool to the dataset, calculation of slope for the area was achieved.  

The final input into the SLEUTH model is the exclusion/attraction layer, which is where 

the user has the most input into the system.  In this dataset an understanding of policy and human 

growth patterns can be used to coerce and hopefully improve modeling performance.  For this 

study three differing exclusion/attraction layers were created to test drivers of development.  

These include a base exclude, sewer/water service area, and population/employment and will be 

explained separately in the next section. Figure 3 provides a visual representation of how these 

layers were incorporated into the model and the data utilized to create them. 
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3.4 Exclusion & attraction layers  

The first version to the exclusion/attraction layer was the standard base layer either 

excluding growth completely or allowing it in a neutral state.  Particular features which were 

excluded included public lands, parks, easements, wetlands, and water.  Transportation systems 

were also off limits to building, so roads, clover leaf intersections, and railroads were assigned 

values of 100.  Finally, we added other areas which were off limits to building and had 

significant urban cover such as airports and military bases.  These areas may have possessed lots 

of open space which SLEUTH believed to be compatible with development, but had to be 

removed for obvious reasons.  All areas not falling within areas assigned a value of 100 for 

exclusion were given a neutral weight.   

Our second exclusion/attraction layer created for this study consisted of the sewer service 

area.  The rationale behind this test was based on the assumption that the location and density of 

development could be determined by whether or not the area was able to access the sewer/water 

network.  Areas within that area of network connection would presumably be developed more 

intensely as the infrastructure was already in place. Data for this layer were compiled by 

collecting service area shapefiles from the various counties within the study area.  In terms of the 

layer itself, the previously mentioned standard exclusion/attraction layer remained the same, with 

values of 100.  However, if a neutral area now fell within the sewer service area, it was to be 

used as an “attractor” of growth, so the value which was once 50, was now to be tested at several 

increments (0, 10, 20, 30, and 40) to see which weight best simulated what was actually 

occurring.   
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The third and final exclusion/attraction layer put together for this research was meant to 

capture the all-day human intensity of the present population.  All-day human intensity refers to 

the stresses of development placed upon RPDs by growth in population and employment.  The 

layer was created using population and employment data from the Baltimore Metropolitan 

Council (BMC, 2010).  While explained in detail within a National Science Foundation (NSF) 

Report (Jantz and Drzyzga, 2011), a brief overview of how these data were incorporated into the 

model will be given here. 

Using past BMC forecasts along with the most recent that run through 2030 we were able 

to compile a data series that fully integrated into the time series for which we had obtained land 

use coverages.  This required extrapolation of population and employment values to create 

annual datasets to match up exactly with our CBWLCD series.  Growth rates within RPD are not 

homogenous across the region, with some capturing more of the region’s growth than others.  To 

identify the significance of RPDs a location quotient was used.  This measured the proportion of 

population and employment change of a particular regional planning district compared to the 

regional average.  With the location quotient values the next step was to scale them into the 0 to 

100 excluded/attraction scores.  To accomplish this final step a logarithmic transformation was 

used to scale the values that could range from 0 - infinity to 0 – 100 and also account for 50 

being the neutral middle value. 

This series of calculations produced an exclusion/attraction score for each RPD, which 

was calculated for three different time intervals during the modeling process.  For calibration of 

the model scores were computed for the period of 1984 – 2001, for validation 2001 – 2006, and 

for forecasting 2006 – 2030.  This layer once again overlays the 100 valued areas of exclusion 
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within the original exclusion/attraction layer.  Where it is more complicated however, is the 

value assigned to each RPD.  Values may range from 0 to 100 in terms of how much weight the 

area had in terms of population and employment.  Values also ranged differently for each of the 

steps calibration, validation, and prediction.  This layer attempts push development into RPDs 

where the growth in all-day human intensity was higher than the regional average, and repel 

growth from RPDs where it was lower. 

3.5 Calibration 

Once the exclusion/attraction layers and datasets were assembled we established the 

process through which calibration, validation, and forecasting would occur.  The first step, 

calibration, is where the model tries to replicate growth patterns from the past.  Mentioned 

earlier, this will occur between 1984 and 2001.  We first used a “brute force” calibration (Clarke, 

et al., 1997)  that tested parameters for their goodness of fit.  In total 3125 different parameter 

combinations were tested, with values for each parameter ranging from 1 – 100 in increments of 

25.  To ensure that variability within SLEUTH’s random processes is accounted for, several 

Monte Carlo trials are performed for each combination of parameters.  During this research 10 

Monte Carlo trials were run for the 3125 parameter combinations.  Once results are returned 

several of the “best” parameter sets are picked based upon their fit statistics.  Fractional 

differences between modeled and actual urbanization trends were measured in terms of area, 

edge, and cluster.  Area measures the difference in the total area of impervious surface cover.  

Edge measures the difference in the total perimeter of urban clusters.  Clusters measure the 

difference in the number of unique development areas, a measure of fragmentation.  These 

metrics were chosen because of their relevance to the study of spatial patterns of development.  
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They also measure different aspects of said development, reducing redundancy in fit statistic 

results.  And lastly, metrics attempting to average all metrics into a single “optimal metric” 

(Dietzel and Clarke, 2007) were avoided.  Optimal metrics can be influenced by less relevant 

metrics to development patterns which decrease the correlation between the metric and 

development patterns (Jantz and Goetz, 2005). To be considered a good match, a scenario should 

match all three of these fit statistics within +/- 5% of actual development patterns.  If a fit 

statistic is outside of this range a fine calibration can be done to try to improve the match and 

scenario’s capabilities.  In this case it meant breaking down the increments of 25 to 5.  Once 

chosen, the best scenarios were re-tested over 100 Monte Carlo trials.  To ensure that the best 

scenario is chosen the model results are then compared spatially.  The best model results are 

imported into a GIS and evaluated against the actual land cover.  Mapped versus modeled 

comparisons were completed at the 480m x 480m resolution to assess the accuracy of the model 

and fit statistics at a finer scale using a differences map.  This identified the effectiveness of the 

regional scale fit statistics to capture development patterns correctly.  To create the differences 

map the percentage of urban coverage would be calculated for both mapped and modeled 

coverages with the following equation; from which their differences could then be compiled: 

(((Sum of Impervious Surface for 30m Cells / 100) * 900) / 480m cell size) 

This allows for visible portrayal of over and underestimation by the SLEUTH model at 

the local scale.  Combined with the fit statistics that measure performance at the regional scale, 

we are able to observe how well each scenario/run matches with the actual development patterns 

by identifying where and by how much the model is over or underestimating at both local and 

regional scales. 



14 

 

3.6 Validation 

The validation process is divided into two steps, unconstrained and constrained.  This 

will determine which of the base, sewer, RPD calibrations are best and then also begins 

preparations for forecasting scenarios up until 2030.  The process utilizes the urban footprint 

from 2001 and predicts out to 2006 based upon the coefficient values from scenarios.  This will 

allow us to validate the calibrations based on the model’s ability to match the actual mapped 

2006 data, which was withheld from SLEUTH during calibration, thus acting as an independent 

variable.  During the validation phase we can also create varied growth projections.  Growth 

projections offer different future outcomes based upon rates of increase in impervious surface 

coverage. 

The unconstrained portion of validation is where we compare the best base, sewer, and 

RPD calibration results by forecasting them to 2006. During this time SLEUTH is programmed 

with the parameter sets from the best calibration runs, for 100 Monte Carlo trials, and does not 

activate any self modification features.  No additional information will be provided during these 

forecasts until 2006.  SLEUTH develops land using an empirical constant growth rate which 

means that all scenarios will linearly predict (based on the 1984 – 2001 growth rate) the amount 

of growth that occurred during the 2001 – 2006 timeframe, but the scenario that is closest to the 

actual, or mapped, amount of impervious surface coverage will be deemed the best.  To address 

changing rates of growth a second stage of validation is done called the constrained phase. 

During actual prediction phases of modeling, extra information is provided to the model, such as 

forecasts for land development.  Self-modification is also allowed, giving SLEUTH the ability to 

simulate changing trends in growth rather than constant ones.  For example the initial time series 
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of this study shows rapid development which tapers off towards later time series and has slowed 

drastically in present years. 

During the constrained portion of validation the best performing unconstrained scenarios 

moves on and is given a development “target” to hit.  This target during validation will be the 

BMC forecasted estimates for urban land cover within the BMR for the year 2006.  Thus while 

both preparing SLEUTH and later utilizing it for 2030 predictions; the data inputs are of the 

same caliber and from the same source.   To hit these forecasted estimates from the BMC we 

allow SLEUTH the ability to use its self-modification feature.  By setting it to boom or bust it 

can be coerced quite accurately to hit the amounts of development which were forecasted.  From 

here we will be able to compare the performance of the base, sewer, and population/employment 

exclusion/attraction layers against one another rather than evaluating them against various runs 

of the same version, say base against base. Once again these differences were looked at as 

differences in the percentage of urban coverage within 480 x 480m cells, as explained earlier. 

 After comparing the base, sewer, and population/employment scenarios, what we 

consider the best all around performer will begin another step.  For this portion of the study a 

series of three growth projections were created, correlating to rates of urbanization throughout 

the study area.  The scenarios make use of compound annual growth rates and an ‘adjustment 

exponent’ that simulates future growth throughout the validation period (2001 – 2006) along 

continuing trend lines.  By increasing and decreasing the exponent, the growth rate can be either 

increased or decreased to meet potential future outcomes. The three projections were named min, 

max, and status quo. The status quo has an adjustment exponent of 1and is a continuation of 

compound annual rates of growth where future urban transitions continue along a steady path 
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created by past trends.  Min correlates to smart growth practices that conserve lands, therefore 

minimizing growth in impervious surface cover.  By dialing down the adjustment exponent to 

0.96 growth within the study area with be around 1 km
2
 per year.  Max is a worst case scenario 

or development boom, where of impervious surface increases continuously, but not so much that 

all-day human density would decrease during later prediction phases.  An adjustment exponent 

of 1.032 met the standards listed for the max scenario (Jantz and Drzyzga, 2011). 

To summarize, the best calibration scenarios for the base, sewer, and 

population/employment move on the validation.  From there they are left unconstrained and run 

in predictive mode with no additional information provided to SLEUTH.  The best performers 

from each of the different scenarios is picked and then constrained by the 2006 population.  After 

comparing modeled results to mapped the best scenario (base, sewer, or RPD) goes on to a 

projection phase.  A variety of projections are created based upon differing rates of growth.  

After choosing the best performing scenario, the process of predicting out until the year 2030 can 

begin.  SLEUTH will once again be running in predict mode, and it will be given the latest 2006 

urban land cover data as a starting point.  In predicting out until 2030, it is also possible to 

continue to create several different scenarios based upon current development trends and other 

forecast values. 

3.7 Forecasting 2030 

 Forecasting to 2030 occurred in similar fashion to other recently published pieces (Jantz, 

et al., 2009; Onstead and Clarke, 2011).  The initialization of the SLEUTH 3-r model occurred 

with an urban extent map from 2006.  Then a series of growth projections representing rates of 

urban growth at accelerated, constant, and decelerated levels was created for the 2006 through 
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2030 time period similar to those created late in the validation phase by compounding annual 

growth rates from BMC forecasts.  These projections will once again be named minimum, status 

quo, and maximum. 

4. Results 

4.1 Exclusion/Attraction Layers 

 Images of exclusion/attraction layers for all three scenarios are shown in Figure 4.  The 

base shows the most areas weighted as neutral with undevelopable lands and waterways 

incorporated.  The sewer service scenario expands upon the base excluded attraction layer by 

overlaying on top of it the ‘attracting’ areas with sewer/water connections.  Finally the RPD 

layer with its derived weights is overlaid with the undevelopable lands from the base layer. 

Figure 5 portrays all of the RPD weights for each of the modeling phases. 

4.2 Calibration 

 Calibration results for each scenarios (base, sewer, and RPD) best run display both the 

best-fit parameters and the fit statistics used to guide the model (Tables 1 – 3).  All of the 

scenarios matched the impervious surface area within 5% and edge/cluster development for all 

three were well within 10% of actual trends.  While the base and sewer service area scenarios 

only required a coarse calibration, a fine calibration was used on the RPD scenario following the 

coarse calibration to try to improve the fractional differences seen in the fit statistics.  The spread 

coefficient was the only one to undergo this change and it was found that a value of 20 brought 

the fractional differences within the 5% and 10% thresholds set for the varying fit statistics. 

4.3 Validation 
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 The same runs were used during calibration were once again used for the validation 

process, so the best-fit parameters remained the same as in Tables 1 - 3.  The fit statistics 

changed slightly and are shown in the validation portion of previously mentioned tables.  In 

addition to these results boom and bust modifiers are available in Table 4.  During the 

unconstrained validation of all three scenarios the over prediction mentioned earlier was clear, 

caused by SLEUTHs assumption of constant growth.  The RPD scenario however did show the 

best prediction of urban area at 1,510.9 km
2
 compared to the actual 1,456.63 km

2
 mapped in 

2006.  Figure 6 shows a comparison of unconstrained scenario results which portray mapped 

versus modeled differences in the percentage of urban coverage.  The graph in Figure 7 also 

demonstrates differences in the different scenarios and provides the actual baseline to which they 

are being compared.  It is important to emphasize once again that although all the results are 

higher than actual area values for the time period, this is consistent with SLEUTH’s 

unconstrained nature to empirically develop lands at a constant rate. 

Maps of the differences in the percentage of urban coverage between the three modeled 

scenarios (Figure 8) also support the claim that RPD best captured urban development trends and 

should therefore move on in the validation process.  The sewer scenario draws much greater 

proportions of growth into the service area than that which actually occurred.  This in turn 

increased the amount of underprediction in the rural areas which received less than their fair 

share.  The RPD scenario did the best job at minimizing differences in the percentage of urban 

coverage throughout the entire study area save a few spots that experienced drastically increased 

growth rates that SLEUTH could not account for. 



19 

 

After constraining the RPD scenarios with population and employment data from past 

BMC forecasts, three different growth projections were completed.  A graph of growth 

projection values can be seen in Figure 9.  This shows that the RPD Min growth projection best 

matched actual growth trends until 2006 resulting in a near perfect match to the amount of urban 

coverage.  Maps in Figure 10 show all three growth projections once again indicating differences 

in the percentage of urban coverage.  The Min map supports the graph presented earlier that it is 

indeed the most accurate of the growth projections for 2006. 

4.3 2030 Forecasts 

The final output from SLEUTH is a series of prediction maps for the year 2030.  In this 

case three forecasts (Figure 11) were made to encompass the same three growth scenarios 

presented late during the constrained validation.  Utilizing the forecast data from the BMR, a 

minimum growth rate scenario was created along with the status quo and maximum growth 

counterparts.  As stated earlier, these were meant to replicate a range in the amount of urban land 

coverage experienced across the study area, potentially exposed to more stringent smart growth 

policy, continuing along recent paths, or enduring even more accelerated unmonitored growth 

than today.  Named accelerated, constant, and decelerated, these growth rate scenarios correlate 

to the maximum, status quo, and minimum growth projections during validation.  Boom and bust 

modifiers were required to hit these forecasts as they were in the validation phase.  Table 4 

contains the modifier values for 2030 projections. 

Mapped results for the 2030 forecasts can be viewed in Figure 12.  This map portrays in 

the status quo map the percentage of urban impervious surface coverage across the entire study 

area should growth rates continue along the most current predicted trends.  Due to the fact that 
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all three forecast maps would appear almost identical without it, the “what if” 

decelerated/accelerated forecast maps were made to be difference maps between their percent 

urban coverage’s and the status quo.  As shown by the difference values in the map legends and 

maps, the differences were generally experienced within the urban areas and how intensely 

development occurred.  Minimal differences were common in the rural areas where growth 

amounts were calculated by SLEUTH was less variable. 

5. Discussion and Conclusion 

The results presented in this paper support the need to look at drivers of human 

development within modeling and also begin to question the SLEUTH process, also questioned 

and examined by its own creator (Clarke, 2008).  The basic excluded layer that includes only 

lands off limits to development has been the default ‘go to’ in past SLEUTH modeling research 

due mostly because of its simplistic nature.  However, this research has shown that it can be 

outperformed and for a more accurate modeling result, one can utilize more extensive datasets to 

build an exclusion/attraction layer that explicitly incorporates “drivers” of change.  While adding 

potentially more relevant information to the SLEUTH model, the exclusion attraction layer can 

also add functionality that went unutilized in the past.  Being able to coerce growth into certain 

areas can be as useful as keeping it out of others. 

In addition to changes in the excluded or excluded/attraction layer and methodology, 

alteration to the methodology of SLEUTH’s typical processes could also be in store.  While 

small datasets may have constrained these methodological additions in the past, the validation 

phase now seems a necessary requirement within the modeling procedure.  Many have chosen to 

ignore this process, but with multiple time steps becoming more commonly available it seems 
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only logical.  Predicting to a point in time where data is available for comparison allows the user 

to check the accuracy of their calibration and potentially adjust it for improved predictive 

capabilities. It can also greatly enhance the understanding of urban change processes.   

When looking back at the steps taken to improve the modeling process and SLEUTH’s 

predictive capabilities by integrating and supplying more functional data into the system through 

the exclusion/attraction layer, it can not be denied that this has allowed the model to improve its 

predictive capabilities.  The population and employment data which was converted into 

exclusion/attraction scores for each RPD within the study area improved SLEUTH’s efficiency 

in allocating urban coverage to areas experiencing development, and prevented it from those that 

were not.  These points are reinforced by the difference maps earlier, but at the same time, 

present a need to test different scenarios as well.  Our sewer/water service area 

exclusion/attraction layer, most simply put, did not perform the way it was expected to.  It drew a 

much larger portion of development into previously urban areas that were actually headed to the 

suburbs.  For this reason it may be important to test multiple drivers, as was done in this 

research.  While researchers may believe a driver can improve the model by influencing it in a 

certain way, this demonstrates that this is not always the case.  Testing multiple drivers with 

multiple exclusion/attraction layers should produce a variety of results from which the best can 

be chosen to run SLEUTH for more accurate predictions. 

The more common practice of providing a range of forecasting targets (Jantz, et al., 2009; 

Onsted and Clarke, 2011) was also reinforced in this research.  While the future is unknown, it 

can typically be predicted to within a range or limits of a certain value.  Presented here were 

scenarios of minimal, constant, and maximum growth.  While these results offered a +/- 5% 
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range from the status quo of a status quo growth rate, it shows how much of an impact 

unhindered or constrained growth could have upon the landscape of the study area. 

To summarize, the goals of the research were met.  A variety of human drivers were 

tested and in the end it was found that the population/employment data acquired from the 

Baltimore Metropolitan Council could be utilized at the RPD scale to provide the most 

influential information for SLEUTH to utilize in the form of a exclusion/attraction layer.  The 

RPD data outperformed both the base and sewer exclusion/attraction layers, of which the sewer 

actually performed the worst.  By outperforming the base exclusion layer the research has shown 

a need to question the information being applied to a model, is it effective, can it be improved?  

While this is just one instance, others have begun asking questions of SLEUTH (Clarke, 2005; 

Onsted and Clarke, In Press) and there is a need to continue asking these types of questions in 

regards to SLEUTH.  It is also important to continue to try to advance the model both in the data 

provided to it and in the methodology by which it operates.  SLEUTH is a model that has been 

around for some time now, and by seeking out answers to questions like these, it can be utilized 

with future datasets to come. 
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Figure 1: The Baltimore Metropolitan Region (BMR) located in central Maryland.  The 

BMR is comprised of five counties (Anne Arundel, Baltimore, Carroll, Harford, Howard) 

and Baltimore City (BMC, 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Percentage of urban coverage and difference in percentage of urban coverage 

(1984 – 2006) for RPDs within the BMR. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Generalized process flow for testing three different exclusion/attraction layers. 

 

 

Figure 4: Exclusion/Attraction layers used for SLEUTH analyses. 

Exclusion/Attraction 

Value 

                Base                                                                                                                                All Day Human Density        

 (Undevelopable Lands)                                      Sewer Service Area                           (RPD -Population/Employment) 



 
Figure 5: RPD weights for calibration (1984 – 2001), validation (2001 – 2006), and 

prediction (2006 – 2030). 

 

 

 

Table 1: 

Base  

Coefficients Values 

Diffusion 1 

Breed 1 

Spread 25 

Slope Resistance 75 

Road Gravity 50 

Calibration Fit 

Statistics 

Fractional 

Differences 

Area 0.036264 

Edge 0.039932 

Cluster 0.079703 

Validation Fit 

Statistics 

Fractional 

Differences 

Area 0.035516 

Edge 0.003493 

Cluster -0.018479 

 

 

 

 

 

 

 

 

 



Table 2: 

Sewer Service Area 

Coefficients Values 

Diffusion 1 

Breed 1 

Spread 25 

Slope Resistance 100 

Road Gravity 50 

Calibration Fit 

Statistics 

Fractional 

Differences 

Area 0.044317 

Edge 0.018441 

Cluster 0.060596 

Validation Fit 

Statistics 

Fractional 

Differences 

Area 0.0383612 

Edge -0.0018585 

Cluster -0.023065 

 

 

 

Table 3: 

RPD 

Coefficients Values 

Diffusion 1 

Breed 25 

Spread 20 

Slope Resistance 75 

Road Gravity 50 

Calibration Fit 

Statistics 

Fractional 

Differences 

Area 0.046029 

Edge 0.047072 

Cluster 0.067445 

Validation Fit 

Statistics 

Fractional 

Differences 

Area 0.027561 

Edge 0.001152 

Cluster -0.017218 

 

 



Table 4: 

Boom/Bust Modifiers 

Validation 2006 

Projection Boom/Bust  Value 

Min Bust 0.010 

Status Quo Bust 0.820 

Max Boom  1.205 

Prediction 2030 

Projection Boom/Bust  Value 

Min Bust 0.300 

Status Quo Bust 0.710 

Max Bust 0.818 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Difference Map of unconstrained validation results. 

 

 

 

 

 

 

 

 

 

Actual Area  1,469.66 km2  

 

Base Urban Area  1,521.88 km2 

 
Sewer Urban Area  1,526.061 km2 

 
    RPD Urban Area  1,510.19 km2 

                           (Best) 
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Figure 7: Best performing scenarios in unconstrained validation phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Difference Maps comparing scenarios constrained by 2006 population 

forecasts. 

Base vs Sewer Base vs RPD (Pop/Employ) 
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Figure 9:  Growth scenarios created during constrained validation phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Differences in percent urban coverage for each of the growth scenarios during 

the constrained validation phase. 
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Figure 11:  Growth rate scenarios through 2030. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12:  2030 growth projections. 


