
 Created by James Hamblin 6/12/08

Flash Tutorial: Creating Listeners Dynamically
You should already be familiar with adding listeners to objects using Flash. These listeners are functions

that take an event as an argument, and “handle” the event by doing something.

Sometimes we are creating a Flash program that needs to have several listeners that are very similar,

but not identical. One example is the “Lights Out” game:

http://webspace.ship.edu/jehamb/flash/lightsout.html

This program draws a randomized grid of

squares that the user can click on. Each

square is a movie clip that needs to have a

listener to handle the user clicking on it. The

tricky part is that the listener needs to

change not only the color of the square that

was clicked on, but also the colors of the

adjacent squares. In effect, the listener needs more than just a link to the object that was clicked on. It

needs to know which squares are adjacent to that object as well.

However, the general structure of these listeners should all be the same. That is, once the program

knows which square was clicked on, it will handle this click in pretty much the same way for each square.

So we really don’t want to manually write essentially the same listener a bunch of times. Instead, we’ll

have our Flash program define the listeners on the fly.

Before we get started, the only things initially on the stage are btnNewGame (a button) and

tbDoneText (a dynamic text box that is initially blank). The first thing we need to do is create setup

procedures to create an initial game for the user, and erase the current game and create a new game

when the user clicks the “New Game” button.

function setupGame():void {

 addGameBoard();

 drawBoxes();

}

function newGame(evt:MouseEvent):void {

 removeGameBoard();

 setupGame();

}

// add a listener for the "New Game" button

btnNewGame.addEventListener(MouseEvent.CLICK,newGame);

Next we need to write functions to create and erase our game board. The game board will be at most 6

squares by 6 squares, so we need to know how big each square will be.

http://webspace.ship.edu/jehamb/flash/lightsout.html

 Created by James Hamblin 6/12/08

var boxHeight:int = 40;

var boxWidth:int = 40;

var boxXSpace:int = 10;

var boxYSpace:int = 10;

function addGameBoard():void {

 // create a board to display all of the square buttons on

 var gb:Sprite = new Sprite();

 gb.graphics.beginFill(0xFFFFFF);

 // since the entire grid is at most 6x6, make enough room

 gb.graphics.drawRect(0,0,5*boxWidth+6*boxXSpace,5*boxHeight+6*boxYSpace);

 gb.graphics.endFill();

 gb.name = "gameBoard";

 gb.x = 10;

 gb.y = 10;

 this.addChild(gb);

}

function removeGameBoard():void {

 // remove the game board and all of the buttons on it

 var gb:Sprite = this.getChildByName("gameBoard") as Sprite;

 gb.graphics.clear();

 this.removeChild(gb);

}

The next section of code is the drawBoxes function, which draws the grid of boxes on the game board,

adds the dynamically created event listeners, and randomizes the board. Let’s look at this one section at

a time. Most of the first part is setup. We define the “on” and “off” colors for our squares, randomly

determine the number of rows and columns, and create an array to store the true/false states that

represent the lights being on or off.

var onColor = 0xFF3333;

var offColor = 0x333333;

var numberOfRows:int;

var numberOfColumns:int;

var states:Array;

function drawBoxes():void {

 // create the squares on the game board

 var gb:Sprite = this.getChildByName("gameBoard");

 var square:Sprite;

 // create 3 to 6 rows and 3 to 6 columns

 numberOfRows = Math.floor(Math.random()*4+3);

 numberOfColumns = Math.floor(Math.random()*4+3);

 // create the states array, which has the same number of

 // "rows" and "columns" as our grid of squares

 states = new Array(numberOfRows);

 Created by James Hamblin 6/12/08

Now we want to actually create the squares themselves. We will have two nested loops. At each step,

we will draw the square, add it as a child to our game board, set its state to “off,” and create a listener

especially for that square. Finally, we randomize the game board.

 for (var i:int = 0; i < numberOfRows; i++) { // i = row number

 states[i] = new Array(numberOfColumns);

 for (var j:int = 0; j < numberOfColumns; j++) { // j = column number

 // create a square, which is by default "off"

 square = new Sprite();

 square.graphics.lineStyle(2, 0x000000);

 square.graphics.beginFill(offColor);

 square.graphics.drawRect(0,0,boxWidth,boxHeight);

 square.graphics.endFill();

 states[i][j] = false;

 gb.addChild(square);

 // position the square in the correct location

 square.x = (j+1)*boxXSpace + j*boxWidth;

 square.y = (i+1)*boxYSpace + i*boxHeight;

 square.name = "square" + String(i) + String(j);

 // add a dynamically created listener for this square

 square.addEventListener(MouseEvent.CLICK,createListener(i,j));

 }

 }

 randomizeGameBoard();

}

There are two big pieces of code that we still need: createListener, which should be a function that

takes in two arguments (row and column numbers), and returns a listener function. The second piece is

the randomizer, but that turns out to be fairly simple, and we’ll do that last. It turns out that

createListener is very simple:

function createListener(a:int, b:int):Function {

 // dynamically create a listener for the square in position (a,b)

 // that switches the box at (a,b) and the adjacent boxes, and

 // then checks to see if you are done

 var foo:Function = function (evt:MouseEvent):void {

 switchAt(a,b);

 if (checkDone()) { tbDoneText.text = "Good job!"; }

 }

 return foo;

}

Notice that createListener returns an object of type Function. Be careful to distinguish function

(which is a keyword used to create functions) and Function (which is a data type). We define a local

 Created by James Hamblin 6/12/08

variable foo that is equal to the listener we want. However, this is a listener that has access to the

variables a and b. When this listener is called, it will call the switchAt function (which we’ll see very

soon) using the values that a and b had when the listener was created.

The function switchAt should switch the state of a given square, and also the squares adjacent to it.

For this we use a helper function called invertState, which inverts a single square.

function invertState(row:int, col:int):void {

 // lookup the square located at (row, col)

 var gb:Sprite = this.getChildByName("gameBoard");

 var thisClip:Sprite = gb.getChildByName(("square" + row) + col);

 // if the square is off, turn it on, and vice versa

 if (states[row][col]) {

 thisClip.graphics.beginFill(offColor);

 thisClip.graphics.drawRect(0,0,boxWidth,boxHeight);

 thisClip.graphics.endFill();

 } else {

 thisClip.graphics.beginFill(onColor);

 thisClip.graphics.drawRect(0,0,boxWidth,boxHeight);

 thisClip.graphics.endFill();

 }

 // reverse the state of the square

 states[row][col] = !states[row][col];

}

function switchAt(row:int, col:int):void {

 // switch the square that was clicked on

 invertState(row,col);

 // switch the squares adjacent to the clicked square

 if (row > 0) { invertState(row-1,col); }

 if (row < numberOfRows - 1) { invertState(row+1,col); }

 if (col > 0) { invertState(row,col-1); }

 if (col < numberOfColumns - 1) { invertState(row,col+1); }

}

Notice that the if statements in the switchAt function are required so that we don’t go outside of the

bounds of our grid of squares.

Finally, we need to check to see if we have won the game (by turning off all of the lights), randomize the

game board, and then set up the game when the program initially starts.

 Created by James Hamblin 6/12/08

function checkDone():Boolean {

 // check to see if all the lights are off

 var bool:Boolean = true;

 for (i = 0; i < numberOfRows; i++) {

 for (j = 0; j < numberOfColumns; j++) {

 bool = bool && !states[i][j];

 }

 }

 return(bool);

}

function randomizeGameBoard():void {

 // randomly click the game board a random number of times

 // this ensures the game is solvable

 var r:int = Math.floor(Math.random()*5+5);

 var row:int, col:int, i:int;

 for (i = 0; i < r; i++) {

 row = Math.floor(Math.random() * numberOfRows);

 col = Math.floor(Math.random() * numberOfColumns);

 switchAt(row,col);

 }

}

setupGame();

