Chapter 3: Using the Critical Path Scheduling Algorithm

For Problem #1, use the critical path scheduling algorithm to find a priority list for the order-requirement graph. Then use your priority list to schedule the tasks on two processors.

1.

```
12 --> 13
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
| 9 | 15 | 20
|   |   |   |
| 2 | 5 | 7 |
|   |   |   |
| 3 | 6 |
```

Priority List: ____ , ____ , ____ , ____ , ____ , ____ , ____
2. Chef Cindy is a contestant on Iron Chef. She has her two sous-chefs Mike and Mary helping her cook her dishes. Here is an order-requirement graph representing nine tasks that need to be performed as quickly as possible. The times are given in minutes.

Use the critical-path scheduling algorithm to determine how the tasks should be scheduled so that the completion time is as early as possible. Can they complete all of the tasks within the 1 hour time limit? How does your answer change if Cindy only has one other chef helping her?