Chapter 4: Reducible and Irreducible Polynomials

On this worksheet you will review the facts about reducible and irreducible polynomials from Chapter 4.

Brute Force

Sometimes we can show a polynomial is irreducible simply by showing that none of the polynomials that could possibly be factors are factors.

1. Show that $x^4 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$. Use an argument by contradiction. If $x^4 + x + 1$ is reducible, it has a factor of degree 1 or a factor of degree 2. Use long division or other arguments to show that none of these is actually a factor.

Checking All the Possible Roots

- If a polynomial with degree 2 or higher is irreducible in F[x], then it has no roots in F.
- If a polynomial with degree 2 or 3 has no roots in F, then it is irreducible in F[x].

Use these ideas to answer the following questions.

- 2. Show that $2x^2 + x + 1$ is irreducible in $\mathbb{Z}_3[x]$ by showing that it has no roots.
- 3. Consider the polynomial $x^4 + 3x^3 + x^2 + 3$ in $\mathbb{Z}_5[x]$.
 - a. Show that this polynomial has no roots in \mathbb{Z}_5 .
 - b. Can you conclude that the polynomial is irreducible?

Using Roots to Factor

Once we know a polynomial has a root x = a, we can factor x - a out of the polynomial using long division. Then we can try to factor the quotient.

- 4. Given that x = 3 is a root of the polynomial $10x^3 + 3x^2 106x + 21$ in $\mathbb{Q}[x]$, factor the polynomial completely.
- 5. Consider the polynomial $3x^3 + 8x^2 + 3x 2$ in $\mathbb{Q}[x]$.
 - a. Use the Rational Root Theorem to make a list of all the possible rational roots of this polynomial.
 - b. Check each of the potential roots, and use your results to factor the polynomial completely.
- 6. Repeat problem 4, but with the polynomial $x^3 x^2 + x 6$.

Eisenstein's Criterion

Eisenstein's Criterion (Theorem 4.23 on page 111) is another method can be used to determine if a polynomial is irreducible. Note that if we can't find a prime to make Eisenstein's Criterion work, that does not tell us for certain that the polynomial is *not* irreducible.

- 7. Use Eisenstein's Criterion to show that each of the following polynomials is irreducible in $\mathbb{Q}[x]$. Make sure to indicate which prime you are using.
 - a. $x^{10} + 50$
 - b. $5x^{11} 6x^4 + 12x^3 + 36x + 6$

Reducing Mod *p*

The final method we have learned is reducing our polynomials mod a prime p. If we reduce the polynomial mod p and the result is *reducible*, then this doesn't tell us anything.

- 8. Show that the following polynomials are irreducible in $\mathbb{Q}[x]$ by finding a prime p such that the polynomial is irreducible in $\mathbb{Z}_p[x]$.
 - a. $5x^2 + 10x + 4$
 - b. $3x^3 + 7x^2 + 10x 5$
 - c. $9x^4 + 4x^3 3x + 7$ (Hint: Use #1.)