Properties of Rings

Keep this reference guide handy while you work on Chapter 3 exercises.

Ring

A <u>ring</u> is a nonempty set R equipped with two operations (usually written as addition and multiplication) that satisfy the following axioms.

1.	If $a, b \in R$, then $a + b \in R$	closure under addition
2.	a + (b + c) = (a + b) + c	associativity for addition
3.	a + b = b + a	commutativity for addition
4.	There is an element 0_R in R such that $a + 0_R = a = 0_R + a$ for all $a \in R$	additive identity
5.	For each $a \in R$ the equation $a + x = 0_R$ has a solution in R	additive inverse
6.	If $a, b \in R$, then $a \cdot b \in R$	closure under multiplication
7.	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$	associativity for multiplication
8.	$a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$	distributivity

Commutative Ring

A <u>commutative ring</u> is a ring R that satisfies this property.

9.	For all $a, b \in R$, $a \cdot b = b \cdot a$	commutativity for multiplication
----	--	----------------------------------

Ring with Identity

A <u>ring with identity</u> is a ring *R* that satisfies this property.

10. There is an element 1_R in R such that $a \cdot 1_R = a = 1_R \cdot a$ multiplicative identity for all $a \in R$

Integral Domain

An <u>integral domain</u> is a commutative ring R with identity $1_R \neq 0_R$ that satisfies this property.

11. If $a, b \in R$ with $a \cdot b = 0_R$, then $a = 0_R$ or $b = 0_R$ property of zero

Field

A <u>field</u> is a commutative ring R with identity $1_R \neq 0_R$ that satisfies this property.

12. For each $a \in R$ with $a \neq 0_R$, the equation $a \cdot x = 1_R$ has a **multiplicative inverse** solution in R