## Finite Rings

MAT 320
Recall that you were asked to sketch a proof showing that in $\mathbb{Z}_{n}$ every nonzero element is either a unit or a zero divisor. The first problem is to show that this is true for any finite commutative ring with identity.

1. Let $R$ be a finite commutative ring with identity. Show that every nonzero element of $R$ is either a unit or a zero divisor.
Here's a start. Let $0_{R} \neq a \in R$. If $a$ is a zero divisor, then we are done. Suppose that $a$ is not a zero divisor. We will show that $a$ is a unit.

Our next goal is to solve problems 4 and 6 . We need to solve problem 2 first.
2. Let $R$ be a finite commutative ring. Show that if there is a nonzero element $a \in R$ that is not a zero divisor, then $R$ has an identity.
(a) First let $R=\left\{r_{1}, r_{2}, \ldots, r_{t}\right\}$ and show that for each $r_{i}$ there is an integer $n_{i}$ such that $a^{n_{i}} r_{i}=r_{i}$.
(b) Let $n=n_{1} n_{2} \cdots n_{t}$ and show that $a^{n}=1_{R}$.
3. How is problem 4 different from problem 1 ?
4. Let $R$ be a finite commutative ring. Show that every nonzero element of $R$ is either a unit or a zero divisor. (Hint: Use problems 1 and 2.)
5. How is problem 6 different from Theorem 3.11 which states that every finite integral domain is a field?
6. Let $R$ be a finite commutative ring with no zero divisors. Show that $R$ is a field. (Hint: Use problem 2 and Theorem 3.11.)

Notice that in problem 2 a power of $a$ is equal to $1_{R}$. This is true for any unit in finite commutative ring with identity. This is the content of problem 8. First we need to solve problem 7.
7. Let $R$ be a ring with identity. Let $u_{1}, u_{2}, \ldots, u_{q}$ be units in $R$ and show that the product $u_{1} u_{2} \cdots u_{q}$ is a unit in $R$.
8. Let $q$ be the number of units in a finite commutative ring with identity. Show that if $u$ is a unit, then $u^{q}=1_{R}$.

The next problem is not restricted to finite rings, but it is on this worksheet anyway.
9. Let $R$ be a commutative ring. Suppose that $a$ is an element of $R$ such that every element of $R$ (including $a$ ) can be written as a product of $a$ and some other element in $R$. Show that $R$ has an identity.

