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1 Introduction

| watched Professor John Conway perform this demonstrationmber of years ago. He calls it “Rational
Tangles” and there is plenty of information about it on th&einet. Since then | have used it myself in
classrooms of students of middle school age and older. THerlying mathematics is very interesting, but it
is not necessary that the students understand all the matiesrfor the demonstration to be educational. In
fact, some of the mathematics | do not understand.

This document is intended for teachers or anyone else whiviikia to do this demonstration and includes
some pedagogical advice and tricks | have used to make therddration run smoothly.

We begin with four people standing at the corners of a reé¢amgch holding one end of two ropes. Then,
without ever letting go of their rope, they perform some sgge of “dance figures” where they exchange
places in various ways and as a result, the ropes becomethnglhat is amazing is that we can assign
a “number” to each of the tangled states which is modified imezipe way by each of the dance figures.
The initial (completely untangled) state is assigned thalmer zero and even though the tangle may become
extremely complicated, by performing the proper sequefifigures that tangle’s number can be reduced to
zero at which point the ropes will be completely untangled.

The operations corresponding to the dance figures forceubersts to practice their arithmetic operations on
positive and negative rational numbers, so a wonderful sffet of this demonstration is that the students
are tricked into drilling their arithmetic facts even thdutpey think that all they're doing is trying to get a
pair of ropes untangled.

For students whose arithmetic with fractions is a little iyghat may be all that they get out of it, but there
is also an opportunity for advanced students to look at farerimderesting mathematics.

2 Getting Started

To demonstrate the trick, you need four students and twdhergf rope that are about 10 feet long. Thicker

rope is better because it is easier for the rest of the clasetthe knot structure and it is harder to accidentally
pull into tight knots that are difficult to work with. If the pes are of two different colors, the tangle structure
is even easier to see. Itis also nice to have a few plastiqshgpags.

Get four volunteers to stand at the corners of a rectangleeafront of the class with each student holding
one end of a rope. In the initial configuration, the two ropesparallel to each other and parallel to the front
row of seats in the classroom. In Figure 1, the top pair oflfianes represents the two ropes, and the small



circles at the ends with the letters “A”. “B”, “C” and “D” repsent the four students. If you imagine that you
are looking down on the students from the ceiling, the regt@tlass is seated above the entire figure on the
page. Student “A’ faces student “C” and student “B” faceslstit “D”.

Make sure that each student has a solid grip on the rope, pevr@pping the end once around their wrist
so that it is not accidentally dropped. During the trick, ftuwdent should ever let go of his or her end of the
rope. Don't let the kids start jerking on the rope, since ié@nd comes loose, it is very easy to lose track
of exactly how the ropes were tangled, and if this occurstribk will fail, and the class will lose interest
rapidly. Also, although the trick works for arbitrarily cquex tangles, be sure to work with simple ones at
first since there is much less chance of an error.

You can explain to the kids that they are going to do sometlilkega square dance where the four students
perform one of three dance figures (but if you've got shy stiglet’s probably best to wait until the vol-
unteers are at the front of the room before you mention thedWdance”). Also explain that the initial
configuration with the parallel, untangled ropes will beigissd the number zero which will indicate “com-
pletely untangled”, and that the performance of each dageeefiwill affect that number in a fixed way.
Finally, tell the rest of the kids in the class to pay attemtisince you'll swap out sets of kids from time to
time so that many more of them can be part of the action.

The only thing that matters is the configuration of the ropghkich student is in which position does not
affect the number assigned to a particular tangle. The sabthe ropes don’t make any difference, either.
For example, the tangle will be in the “zero,” or completehtangled position whether the red rope or the
green rope is nearest the students in the class.

3 The Three Basic Dance Figures

Conway calls the two main dance figures “Twist 'em up” and fTtem around”. The unfortunate thing
about this choice is that they both begin with the lettEt.“If you're trying to analyze the results of various
sequences, these names do not provide an easy shorthardl Wikiuse “Twist” and “Rotate”, since then
you can write something likel"T' RT R" to indicate that sequence of 5 figures in the dance (in thée cavo
twists, followed by a rotate, then a twist, and finally, amstiotate). In what follows, | will use the names
Twist andRotate, and "I and “R” as shorthand, especially when | need to refer to a sequent®wes.
(In fact, we will see that when a sequence is repeated, welsamse an exponential notation if the kids are
familiar with it. For example, the sequen&@ T RTTT R could be written using the shorthafid RT3 R.)

Later in this article we will get even a little more sloppy asal/ things like “apply & T'R” as a shorthand
for “apply aTwist, then anothefwist and finally aRotate’.

When explaining the moveTiist”, make sure that all four students pay attention, sinceoatgjh only two
of them perform any particulaiwist, they may be arranged differently later in the dance andhaie to do
it when they are in those positions.

To perform theTwist dance figure, the two students on the left (from the point efwof the students in
the class) change places, with the student initially in g tifting his or her rope and the student in front
stepping under it. As itis labeled in Figure 1, students A Braivap places, where student B lifts their rope
and A steps under it to the rear. In Figure 1 the results ofoperihg zero, one, two and three of theist
dance figures (or, in shorthand, performifity 7!, T2 and7®) from the initial (zero) configuration are shown
from top to bottom. Notice that from the points of viewaf of the students holding the ropes, after starting
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Figure 1: Twisting

from zero and performing jusiwist moves, the ropes will appear to twist away from them in a chisk
direction. Notice that with eachiwist, the positions of students A and B are swapped. Demonstristéot
the class. Near the end of this document, in Figure 3 are stimte® of tangles made with real rope that are
probably easier to visualize than those in Figure 1.

Each time alwist move is made, the number associated with the tangle is isedday1, so in Figure 1 the
four tangles from top to bottom are represented by the nusiihér 2 and3. If the tangle’s number is a pure
integer like this, then the integer represents the numbkealfftwists in the rope.

Conway'’s dance figures for manipulating tangles do not admiitnTwist figure (which would exactly undo

a Twist), but if there were one, it would be easy to do: the same tw@lpeon the left change places, but
this time the person in front raises the rope and the pershimthesteps under it. Such amnTwist dance
figure would subtract from the tangle’s associated number. This is a very obviousept, and ifTwist and
UnTwist were the only two legal moves, it's clear that starting froemaz any positive or negative integer
could be obtained, and if you knew that number, the ropesddoeiluntangled by performing that number of
UnTwists or Twists, depending on whether the number were positive or negative

In fact, a dance that only haldvist andUnTwist commands would be very simple to model, mathematically.
Every reachable tangle would have a number that is a positinegative integer, or zero. Evefyist adds
one and everyJnTwist subtracts one. Of course the “tangles” will be pretty simglest spirals of rope
twisted one way or the other. Notice also that if you know thatcurrent number in such a model happens
to be5, there is no way to know exactly how you got there: any comtimna of Twist andUnTwist that
containss moreTwist’s thanUnTwist’s will yield a 5.

The second dance figuBisplay, does nothing to the tangle; it is simply to display the ctindiof the ropes
and tangle to the rest of the class. To ddigplay, the two people farthest from the class raise their ropes and
the two in front lower them so the tangle is displayed in anbatacted way. Conway usually also required
that everyone in the class cheer and clap whBisplay dance figure was performed. The cheering is a good
idea, as it gives the class something fun to do.

To perform the third dance figur®otate, each student moves one position clockwise, when viewed fro
above. In Figure 1 if we began from the top arrangment in thedigaRotate would move A to C's position,

B to A's position, D to B’s position and C to D’s position. If yovere toRotate four times in a row, each
student would wind up exactly where they started. Demotestaathe class that at least when there are only
twists in the rope (and in fact it will always be true) that tRotate dance figures will return the ropes back



to where they started, even though the students will be ongpesite sides. Perhaps this can be made clear
by reminding the students that the numBeirfor example, represents 3 clockwise half-twists of theesop
from the point of view of any of the students. As they turn argunothing is going to change the clockwise
orientation, so after the two pairs on the ends have swapipeds they still see three clockwise half-twists,
so rope configuration is unchanged.

This observation indicates that the operation on the nuasssciated with the tangle has to bring it back to
where it started if you apply thRotate operation twice. Depending on the sophistication of thes;lgou
might use functional notation as follows:

Letz be the number associated with the current tangle. If we applyist, we'll use the functiont(z) = x+

1 to indicate what dwist does to the current number. At this point, we don’t know whatRotate number
r(x) does, but we do know two things. Clearkyr(r(r(z)))) = «, since rotating everyone completely
around the square obviously leaves everything completethanged, no matter what the tangle. We also
know for sure that if the tangle consists only of twists, thénx)) = x.

Warning: This functional notation may be confusing, since the fuondihave to be written in the opposite
order that the dance figures are performed. For example, dtaréfrom a tangle whose associated number
is z and do arwist followed by aRotate, we've been using the notatiod"R” to indicate that: “twist, then
rotate”. But to figure out what the resulting correspondingiber should be, th&wist will turn z into ¢(x)

and theRotate function will operate ort(z) to produce-(¢(x)). It's easy to see how this reversal will always
occur, so that something lik&€"TRTTT RT = T? RT3 RT” will convert an initial numberr to:

E(r (¢ (r(t(t(2)))))))-

So the bottom line is that unless you've got a sophisticatetieace, it's probably a good idea to avoid the
functional notation.

4 What Mathematical Operation Represents Rotate?

At this point we still don’t know exactly hoviRotate should affect the tangle’s associated number. All we
know (or at least suspect) is that applyiRgtate twice brings us back to where we started. In other words,
r(r(x)) =,

For another clue about hoRotate should affect the number (or alternatively, the formréf)), have the
students do this: Start from the ropes in a “zero” tangle. DeTwist (so the number is now). Next do
aRotate. Finally do anotheffwist, and they will find that this brings the ropes back to the ugl@ah state;
namely, zero. This means that after fetate, the number must have beer, since adding to it brings us
back to a0 configuration. SdRotate changes d to a—1. (Alternatively, using the functional notations we
could write:r(1) = —1.)

The class will then probably make the reasonable (but wrgngks that &otate dance figure multiples the
number by—1. Sometimes they even guess that it add&ou can convince them that addiggs clearly
wrong, since doing it twice should return to the original roemand adding twice will add4 to the original
number. The conjecture thRbtate multiplies the number by-1 (or functionally, that-(z) = —z) makes
sense, since multiplying by1 twice returns to the initial number. But this is easy to t&tart from0, do
two Twists (which will convert the tangle’s number §) followed by aRotate. If Rotate multiplies by —1,
then the ropes should then be in the state, and twdwists should ad@ to the —2, returning the tangle to
the initial state. Try it, and see that this does not happen.



Depending on the sophistication of the class, you can ettlethem the answer and go on, or try to lead
them to it by considering other operations that turmto —1 but not2 into —2, yet when repeated twice
bring every number back to itself.

| have found that it is useful to make boards out of wood or ¢bing that are shaped like those illustrated in
Figure 2. Cut slots in the four corners that are a tiny bitoaar than the cord that you use to represent the
ropes. Cut pieces of cord that are perh2tisnes the length of the diagonal of the board and tie knot®tt b
ends. Students can then use this board to run experimemtyaribus combinations dfwist andRotate.

I've found that one board plus a pair of cords for every foufiwe students is sufficient. The cords can be
slipped into the notches on the corners of the board and tikstay in place due to the knot on the end and
the fact that there’s some friction because the cord is aitfatter than the slot. With such a board even a
single person can easily run experiments without the neefdéo hands.

Figure 2: Test Board

Making aTwist simply involves swapping the cords on one side of the boaddsd®otate is accomplished
by rotating the entire board.

If you've got the boards, send the students in the front batkeir seats and pass out borads to the groups of
kids.

With the students divided into groups, ask them to try to fimdmbination ofTwist’s andRotate’s that will
return a2 (in other words, twalwist’s from zero). If they get the Zwist solution, have them look for a way
to undo3, 4 or 5 initial Twist’s. Have them write down the patterns they find in an organvzag so that they
can look for patterns. (Include the inverselgfsince that may make the pattern easier to see.) The niag thin
about this is that even if there’s a slow group at finding thBa2st solution, by the time the fastest group
has the 4- or SFwist solution (or even the general pattern), the slowest gronpataost always make some
progress.

For reference, here are the sequences that undo the pdigerdsibove as well as the general formula, which
some of the groups are likely to find:

[ Initial Position | Inverse \
T RT
TT =T2 RTRITT
TTT =13 RTRTTRIT
TTTT =T* | RTRTTRTTRTT
" RT(RTT)" !

Get the class to see the pattern and then have them test theusisg their boards on something more
complex, likeT®.

Now we have a little more data; perhaps enough to help us fautrehat mathematical operation we should



assign tdRotate.

Here is one idea: First remind the class that, at least fog puisting, the mirror image of a twist is repre-
sented by the negative of the number represented by thanakigure twist. Do &'T'R which produces a
numberz. If we can figure out what is (as a number) then we will know whBbtate does to the numbe.
Have the class take a good look at the ropes in this configurafiollow that by & (which produces: + 1)
and notice that the result is just a mirror imagerofn the same way that1 and1 are mirror imagesy and

x + 1 are also. This means that another good guess might be-that « + 1, which we can solve to yield
x = —1/2. If this is true, then we know that tHRotate command converts ainto —1/2.

If the class is a little bit sophisticated, here is anotheenhing to do. Start with the usual zero configuration
and do a singl&kotate. Now do any number ofwist operations. Th&wist operations have no effect: the
ropes remain parallel to each other, but perpendicularegdrtnt row of the class. This means that whatever
numberr(0) happens to be (let's call it for now), this “number” has the strange property that 1 = i.
Now there aren’t any normal numbers like that, but maybe drtheokids will come up with the idea that
oo + 1 = o0, S0 perhaps = oo, whatever that means.

If that's the case, we havgr(z)) = =, we haver(1) = —1, it seems likely that(2) = —1/2 and we have
r(0) = oo (and obviously, if we rotate thext” configuration we’ll return to zero, se(co) = 0). These
may provide enough clues for a sophisticated class to daterthe correct operation to associate with the
Rotate dance figure. (Actually, an even better number to assign thigh-oo, but that may require even
more sophistication on the part of the students.)

The correct answer is th&otate takes the tangle represented:bwnd turns it into the tangle represented
by —1/2z. Thus, starting from zero, the sequer£&€R leaves a tangle with value1/2. You can check
this by starting from zero, doing AT R (which should leave-1/2), then doing &l (yielding a value of
—1/2+4+ 1 = +1/2), then anR (yielding —2) and then &"T" brings you back to zero. Have the class check
that this works for the examples examined so far, and if theediscovered theo idea, that it makes some
sort of sense even then.

5 Getting to Zero

Get a new set of students in front of the class with the largefs®pes.

At this point you can begin to consider how an arbitrary tamgbf the rope using th@wist and Rotate
commands can be converted back to the untangled state agiagqanly theTwist andRotate commands.
You might begin by having the kids suggest moves that targdeape a little bit: perhaps seven or eight
steps, but carefully keeping track of the numbers. For naakersure they start with at least tWawists and
mix in both Twists andRotates after that.

If they try to do twoRotates in a row, point out that although this is perfectly legak secondRotate undoes
the first, so the two moves taken together achieve nothing.

What you can do is collect move suggestions from differens kigeping track of the tangle’s number until
it is suitably complex. (Of course the meaning of “suitaldigpends completely on the arithmetic abilities of
the students in the class). Also, as your first example, s after a command has left the number positive.
For example, the sequen@& RTTT RT, starting from zero, leaves a tangle with associated nuier
This is a nice number since it doesn’t have numerator or darator that's too big, but it is complicated
enough to be interesting. We'll use this example in whabfet.



Tell the kids that their goal is to get the numt3gi5 down to zero using onlRotate and Twist commands.
As a first hint, tell them thatwist will add 1 which will take the number even farther away from zero, so to
make progress, probably the best possible command to sthrisiRotate. We now have-5/3.

Maybe they can solve it from this point on, but if not, point aow that anotheRotate will just undo the one
they did, so the only reasonable next step Twst, yielding —2/3. At this point aRotate will not put you
back where you started, but it would yield a positive numbed that can’t be good, since anotliastate
is useless, and one or moFerist commands would take the number away from zero. Thus fr@y3, the
only reasonable move is anothewist, yielding1/3.

Repeating the arguments above, we clearly neRdtate, taking us to—3, and then thre&wists get back to
zero. Go ahead and do this with the ropes and verify that thdees untangle the mess.

As the kids are working to undo the tangle represented by3gay| like to keep track of the calculation on
the board with a drawing like this, where we add the arrowsreevd values as each operation is performed:

6 Next Steps

Depending on the amount of time available and the sophikiitaf the audience you can then cover some
of the topics in the following sections. But whatever you ldaye enough time for the following:

Make another tangle, a bit more involved than the ones yoe bawmsidered up to this point, and once it's
created, put the tangle into a bag as follows. Take a plasticand make two small holes in the corners
opposite the opening. Take the ropes, one at a time, fronwih&itls on the left and feed them through the
holes and back to the kid. Pull the bag opening over the tagletie the whole thing shut so that the tangle
is completely enclosed in the bag.

Finally, carefully apply the steps that undo the tangle ahénvyou’re done, there will be a horrible snarl
of ropes and plastic, which, if you've made no mistakes, khbe equivalent to zero. To prove it, tear the
plastic bag into pieces to extract it from the tangle, and tivith a few tugs, the entire mess will appear to
magically untangle itself!

Obviously, you need to beery careful with the arithmetic and to make sure that the kidsoingithe tangle
do exactly the correct calculations. | usually ask everyionthe audience to check the arithmetic and to
check that the kids on the ends of the ropes do exactly whgtérsupposed to.

7 “Bad” Tangles

The following tangles are perfectly ok in a mathematicalsgeut untangling them is a long process, and
can be quite error-prone. For that reason, unless you'vargaiochistic tendencies, avoid tangles with
numbers like—1/n, wheren is a large integer. They are easy to produce: suppose ydufistar zero
and doTTTTTTTTR: eight Twist dance figures followed by Rotate. This will produce the number
—1/8. It's a good exercise to try to untangle it using our methosge what happens. Here’s what happens,
shown as a series of steps:



| Start | Operation| Result |

—1/8] TRT | —1/7
—1/7| TRT | —-1/6
—1/6 | TRT | —1/5
—1/5| TRT | —1/4
—1/4| TRT | —-1/3
—1/3| TRT | —1/2
—1/2 | TRT —1
—1 T 0

It requires22 moves to return-1/8 to zero. Not only that, but the arithmetic is pretty boring:tgough the
details for a couple of the rows above to see what happens.

8 Discussion Topics

Here are a few ideas that may lead to interesting class difoss

8.1 Infinity as a Tangle Number

Try starting with zero and do a singRotate. This yields the nonsense valud /0, but it's not a nonsense
tangle. AnotheRotate will bring it back to zero, and in fact, it sort of behaves likefinity” in the sense
that aTwist (try it) leaves it exactly the same. This sort of correspaind$e idea that addingto oo leaves
it unchanged. You may have discussed this earlier, depgmdiithe sophistication of the class.

8.2 Proof of Convergence to Zero

Can you prove that the scheme outlined above will alwaysterdlyg grind any initial fraction down to zero?
Go through a few examples and see what is happening. Hereeissanple starting from-5/17:

12

T R 1070 7 R 12972 r Torrrrl R 2 77
el it W LN = - = -
17 12 12 7 7 2 2 1

5l

Note that after eacRotate command, the resulting negative fraction has a smallerrdéraior. Why is this?
If the denominators always eventually get smaller, theytrausntually get td. But when a denominator is
the fraction will be a negative integer, and if that integeppens to be-n, we know that: Twist commands
(each adding) will reduce it to zero.

8.3 Relationship to the Greatest Common Divisor

If the students are a bit advanced, you can point out thatriteps of reducing the fraction down to zero is
almost exactly the same as finding the greatest common diisaC D) of the numerator and denominator.
Since we begin with a fraction reduced to lowest terms, thiisalways get us down tad as theGC D.



Euclid’s algorithm for calculating th&'C' D of two numbers works as follows. If the two numbers arend

n, and we suppose that > n, we can write:m = kn+1, wherek > 1is aninteger antl| < n. Any number
that dividesm andn must dividel in the equation above, so we can conclude hatD (m,n) = GCD(n,1).
The numbers in the right hand side are reduced, and the proaade repeated until one is a multiple of the
other.

Here is an example: find théC D of 4004 and700:

4004 = 700 x 54 504
700 = 504 x1+196
504 = 196 x 24112
196 = 112x1+484
112 = 84 x1+28

84 = 28 x 3.

TheGC'D of 4004 and700 must divide504 from the first line, sa7C D(4004, 700) = GC'D(700,504). The
same process can be continued to obtain:

GCD(4004, 700) = GCD(700,504) = GCD(504,196)
= GCD(196,112) = GCD(112,84) = GCD(84, 28).

But 84 is an exact multiple 028, soGC' D(84,28) = 28, and we can therefore conclude that
GCD(4004,700) = 28

as well.

Note that there is no requirement that the numbers on thé miggid sides of the sequence of reductions be
positive. All that we require for convergence is that theyshwller in absolute value than the smaller of the
two values for which you are trying to obtain th&'D. Also note that division can be achieved by repeated
subtraction, and if you simply check to see if the subtracti®lds a non-positive humber, you know you
have gone far enough. It's sort of like backing up your cail you hear breaking glass, but it works!

With all that in mind, let’s find the&>C D of 5 and17 using this totally crude method:

5 = 17x1-12
17 = 12x1+5=12x2-7
12 = Tx145=7Tx2-2

= 2Xx145=2%x243=2x3+1=2x4-1
= 1x14+1=1x2+0.

Note the similarity of this method to the one we used to ob@i{iD (4004, 700) above. But this time,
rather than doing a division, we do repeated subtractiotisthe remainder is zero or negative. Then we
use the (positive value of) the remainder in the next step.filély discover thatl divides2 evenly, so
GCD(5,17) = 1. Now compare this sequence to the one that reduces the taalgke—5/17 to zero at the
beginning of this section. You will see that the calculasi@ne virtually identical.



8.4 What Tangle Numbers Are Possible?

Is it possible to start from zero and get to any (positive @yatiee) fraction? Have the students mess around
for a while and see what fractions they can come up with. Adsbgoals, such as, “Can you start from zero
and get to—3?" If there is no progress, here is a giant hint:

If we start from3 and work our way to zero using our standard methods, the sequ&l’ RTT RT'T does
the trick. But now note that if we start from zero and use theerge of the sequence above, namely:
TTRTTRTR, we get to—3. Also, note that at every stage in the sequence, the samefra@re gen-
erated, except that they have opposite signs.2

8.5 Minimum Steps from 0

From the previous section, we know that we can get to anyidract j by using our algorithm to gring-i/j
to zero, and then reversing the order of the dance figurekislghte minimum number of steps?

The tables below show the minimum number of steps to get tiyp@and negative fractions betweépil
and7/7 (the second shows the steps to get fractions betwdgn and—7/7). We use exponents to reduce
the size of the strings in the sense that we might expresetheesce TRTTRTTT asT(TRT)?T?. An

X in a slot indicates that the fraction represented by thatisloot reduced to lowest terms. So for example,
to look up the shortest sequence that will get you from zereg7, we use the second table below (since the
fraction is negative). We look in the column headed-byand the row headed Byand find the following:
T(TTR)3, which would expand t&TTRTTRTTR, and it is easy to verify that this, in fact, will generate
—5/7. Check some other examples.

Similarly, if you look in the column headed tyand the row headed by you find anX, since6/4 is not
reduced to lowest terms: you should have been looking f@rin column3, row 2.

Table 1: Positive fractions:

1 2 3 4 5 6 7
1 T T2 T3 71 T° 76 T7
2 T?°RT X T2RT? X T?RT3 X T?RT*
3 | T(TRT)? T3RT X T(TRT)’T T3RT? X T(TRT)?T?
4 | T(TRT)? X TART X T(TRT)T X TART?
5 | T(TRT)* | T2(TRT)? | T?RT3RT T°RT X T(TRT)*T | T?(TRT)’T
6 | T(TRT)® X X X TSRT X T(TRT)’T
7 | T(TRT)® | T2(TRT)® | T3(TRT)?2 | T(TRT)?>T?RT | T?RT*RT T'RT X

Table 2: Negative fractions:

10



-1 -2 -3 —4 -5 —6 -7
1| TR | T(TRT)R | T(TRT)’R | T(TRT)’R | T(TRT)*R | T(TRT)°R T(TRT)°R
2 | T?R X T?(TRT)R X T?(TRT)?2R X T?(TRT)’R
3| T3R | T?RT?R X TARTR T?RT3RTR X TART?RTR
4| TR X (T?ZR)3 X T°RTR X (T?R)?’T°RTR
5 | T°R | T?RT°R T3RT?’R | T(TRT)’TR X TSRTR T?RT*RTR
6 | TSR X X X (T?R)® X T'RTR
7| T"R| T?RT*R | (T?R)’T°R TART?R T(TTR)? (TTR)® X

There are some obvious patterns here, and an interestingjsexés both to look at the patterns and then to
try to prove them. Here is a list of some of the obvious oneshages there are others.

T : 0—n
T(TRT)" : 0—1/(n+1)
T?RT™ : 0— (2n—1)/2
T*(TRT)" : 0—2/(2n+1)
T(TRT)"R : 0— —(n+1)

On the following page is a list of fractions that can be olgdinstarting from zero, by applying various
sequences df’ and R. The data on that page may also be useful to generate camectbout sequence
patterns and the fractions resulting from them.

Some sequences do not yield patterns that are obvious atfosexample, consider the sequeng&RT,
T3RT?, T*RT?, ..., in other words, what doeg"*! RT™ represent? The first few values arg2, 5/3,
11/4,19/5, 29/6. The denominators go up kyeach time and the numerators 46, 8, 10. A little fooling
around will yield the formula(n(n + 1) — 1)/(n + 1), for n > 0. Following this idea can lead to an
investigation of how to find formulas to represent the nuraliesome series.
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Figure 3: Tangles with real rope

In Figure 3 is illustrated a series of tangles as they appdéarn@al rope. Reading from the top left, they
represent the numbers:

0,1,2,3,—-1/3,-1/3+1=12/3,2/3+1=5/3,and — 1.

All but the final—1 are achieved from the previous tangle by a twist or a rotdte. fihal tangle, correspond-
ing to —1, by performing rotate to the tangle in the upper right thatesentd.

12



Figure 4: Turning/3 back to0.

Figure 4 illustrates the conversion of the tangle repregkhy5/3 back to zero. We begin with/3 in the
upper-left photo, which is the same as #) displayed in Figure 3. It's easy to check that the sequence
RTRTTTR will convert that to—2 and each successive photo above shows the result after tiase?
steps. It should be clear by looking at it that two mévést dance figures will completely untangle the ropes
in the final photo.
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Here is a table listing the resulting fraction from varioesgjgences df” and R:

R | oo T°RT?R | —5/9 TERTR | —8/7 T'RT?RT | 6/13
T 1/1 TART* | 15/4 T'RT3 | 20/7 TSRT® | 29/6
T2 | 2/1 TART3R | —4/11 T'RT?R | —7/13 TSRT*R | —6/23
TR | —1/1 TART?RT | 3/7 TSRT* | 23/6 TSRT®RT | 11/17
T3 | 3/1 T3RT® | 14/3 TSRT3R | —6/17 TSRT?RT? | 16/11
T°R | —1/2 T3RT*R | -3/11 TSRT?RT | 5/11 TSRT?2RTR | —11/5
T4 | 4/1 T3RT3RT | 5/8 TSRTS | 24/5 T°RTS | 29/5
T3R | —1/3 T3RT2RT? | 7/5 TSRT*R | —5/19 TSRT°R | —5/24
T?RT | 1/2 T3RT?RTR | —5/2 TSRT3RT | 9/14 TSRT*RT | 14/19
75 | 5/1 T?RT® | 11/2 TSRT?RT? | 13/9 TSRT3RT? | 23/14
TR | —1/4 T?RTR | —2/9 TSRT?RTR | —9/4 T°RT3RTR | —14/9
T3RT | 2/3 T?RT*RT | 5/7 TARTS | 23/4 TSRT?RT? | 22/9
T?°RT? | 3/2 T2RT3RT? | 8/5 TART°R | —4/19 TSRT?RT?’R | —9/13
T?2RTR | —2/1 T?RT3RTR | —5/3 T*RT*RT | 11/15 TARTT | 27/4
76 | 6/1 T?RT?RT? | 7/3 TART3RT? | 18/11 TARTSR | —4/23
T°R | —-1/5 T?RT?RT?’R | —3/4 TA*RT3RTR | —11/7 TARTSRT | 15/19
TART | 3/4 T [ 10/1 TART?RT® | 17/7 TARTART? | 26/15
T3RT? | 5/3 TR | —1/9 TA*RT?RT?’R | —7/10 TA*RT*RTR | —15/11
T3RTR | —3/2 T8RT | 7/8 T3RTT | 20/3 TART3RT? | 29/11
T?RT? | 5/2 T'RT? | 13/7 T3RT°R | —-3/17 TART3RT?’R | —11/18
T?RT?’R | —2/3 T'RTR | —7/6 T3RT°RT | 11/14 T*RT?RT* | 24/7
T | 7/1 TSRT3 | 17/6 T3RT*RT? | 19/11 TA*RT?2RT3R | —7/17
TSR | —1/6 TSRT?R | —6/11 T3RT*RTR | —11/8 TA*RT?RT?RT | 3/10
T°RT | 4/5 T5RT* | 19/5 T3RT3RT? | 21/8 T3RT® | 23/3
TART? | 7/4 T5RT3R | —5/14 T3RT3RT?’R | —8/13 T3RT'R | —3/20
TARTR | —4/3 T°RT?RT | 4/9 T3RT?RT* | 17/5 T3RTSRT | 14/17
T3RT® | 8/3 TART® | 19/4 T3RT?RTR | —5/12 T3RT°RT? | 25/14
T3RT?R | -3/5 TIRTAR | —4/15 T3RT?RT?RT | 2/7 T3RT°RTR | —14/11
T?°RT* | 7/2 TART3RT | 7/11 T?RT® | 15/2 T3RTA*RT® | 30/11
T?RT3R | —2/5 TART?RT? | 10/7 T?RT'R | —2/13 T3RTART?R | —11/19
T?RT?RT | 1/3 TA*RT?RTR | —7/3 T?RTSRT | 9/11 T3RT3RT* | 29/8
78 | 8/1 T3RT® | 17/3 T2RT°RT? | 16/9 T3RT3RT3R | —8/21
TR | —1/7 T3RT°R | —3/14 T?RT°RTR | —9/7 T3RT3RT?RT | 5/13
TSRT | 5/6 T3RTART | 8/11 T?RTART? | 19/7 T3RT?RT® | 22/5
TSRT? | 9/5 T3RT3RT? | 13/8 T?RT*RT?R | —7/12 T3RT?RT*R | —5/17
TSRTR | —5/4 T3RT3RTR | -8/5 T?°RT3RT* | 18/5 T3RT?RT3RT | 7/12
TART3 | 11/4 T3RT?RT® | 12/5 T?RT3RTR | —5/13 | T3RT?RT?RT? | 9/7
TART?R | —4/7 T3RT?RT?’R | —5/7 T?RT3RT?RT | 3/8 T3RT?RT?RTR | —7/2
T3RT* | 11/3 T?RT7 | 13/2 T?RT?RT® | 13/3 T?RTY | 17/2
T3RT3R | -3/8 T?RTSR | —2/11 T?RT?RT*R | —3/10 T?°RT3R | —2/15
T3RT?RT | 2/5 T?RT°RT | 7/9 T?RT?RT3RT | 4/7 T?RTTRT | 11/13
T?RTS | 9/2 T?RTART? | 12/7 T?RT?RT?RT? | 5/4 T?RTSRT? | 20/11
T?RT*R | —2/7 T?RTARTR | —7/5 | T?RT?RT?RTR | —4/1 T?RTSRTR | —11/9
T?RT3RT | 3/5 T?RT3RT® | 13/5 T2 [ 12/1 T?RT°RT® | 25/9
T2RT?RT? | 4/3 T?RT3RT?R | —5/8 THR | —1/11 T?RT°RT?’R | —9/16
T?RT?RTR | -3/1 T?RT?RT* | 10/3 TIORT | 9/10 T?RT*RT* | 26/7
79 1 9/1 T?RT?RT3R | —3/7 T9RT? | 17/9 T?RTART3R | —7/19
T8R | —1/8 | T?RT?RT?RT | 1/4 T°RTR | —9/8 T?RT*RT?RT | 5/12
T'RT | 6/7 T [ 11/1 TS8RT3 | 23/8 T?RT3RT® | 23/5
TSRT? | 11/6 TIOR | —1/10 T8RT?R | —8/15 T?RT?RT*R | —5/18
TSRTR | —6/5 TORT | 8/9 T'RT* | 27]7 T?RT3RT3RT | 8/13
T5RT3 | 14/5 T8RT? | 15/8 T'RT3R | —7/20 | T?RT®RT?RT? | 11/8
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Here are the sequences required to return various fracti@eso, organized by denominator. The first twelve

numerators that are relatively prime to the denominatotisted for each denominator.

1/1: RT 1/7: RT'

2/1: RTRT? 2/7: RT*RT2

3/1: RTRT2RTZ2 3/7: RT3RT2RTZ2

4/1: RTRT?RT2RT? 4/7: RT?RT*

5/1: RTRT2RT2RT2RT? 5/7: RT2RT2RT3

6/1: RTRT2RT2RT2RT2RT? 6/7: RT2RT2RT2RT2RT2RT2

7/1: RTRT2RT2RT2RT2RT2RT? 8/7: RTRTS

8/1: RTRT?RT?RT?RT?RT?RT?RT? 9/7: RTRT®RT?

9/1: RTRT2RT2RT2RT2RT2RT2RT?2RT? 10/7: RTRT*RT2RT?

10/1: RTRT?RT2RT2RT2RT2RT2RT2RT2RT? 11/7: RTRT3RT*

11/1: RTRT2RT2RT2RT2RT2RT2RT2RT2RT2RT? 12/7: RTRT3RT2RT3

12/1: RTRT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT? 13/7: RTRT3RT2RT2RT2RT2RT?

1/2: RT? 1/8: RTS

3/2: RTRT3 3/8: RT3RT3

5/2: RTRT2RT3 5/8: RT2RT3RT?

7/2: RTRT2RT2RT3 7/8: RT2RT2RT2RT2RT2RT2RT?

9/2: RTRT2RT2RT2RT3 9/8: RTRT?

11/2: RTRT?RT2RT2RT2RT3 11/8 : RTRT*RT3

13/2: RTRT2RT2RT2RT2RT2RT3 13/8 : RTRT3RT3RT?

15/2 : RTRT2RT2RT2RT2RT2RT2RT3 15/8 : RTRT3RT2RT2RT2RT2RT2RT?
17/2: RTRT2RT2RT?RT?RT2RT2RT2RT3 17/8 : RTRT2RTY

19/2: RTRT?RT2RT?RT2RT?RT2RT?RT2RT3 19/8 : RTRT2RT*RT3

21/2: RTRT2RT2RT2RT2RT2RT2RT2RT2RT2RT3 21/8: RTRT2RT3RT3RT?

23/2: RTRT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT3 23/8: RTRT2RT3RT2RT2RT2RT2RT2RT?
1/3: RT3 1/9: RTY

2/3: RT2RT? 2/9: RT®RT?

4/3: RTRT* 4/9: RT3RT2RT2RT?

5/3: RTRT3RTZ2 5/9: RT2RT®

7/3: RTRT2RT? 7/9: RT2RT2RT2RT3

8/3: RTRT2RT3RT? 8/9: RT2RT2RT2RT2RT?2RT2RT?2RT?
10/3: RTRT?RT2RT* 10/9 : RTRTO

11/3: RTRT2RT2RT3RT2 11/9: RTRTSRT?

13/3: RTRT2RT2RT2RT* 13/9: RTRT*RT2RT2RT?

14/3: RTRT2?RT2RT2RT3RT? 14/9 : RTRTSRT®

16/3: RTRT2RT2RT2RT2RT* 16/9: RTRT3RT2RT2RT3

17/3: RTRT?RT2RT2RT2RT3RT?2 17/9: RTRT3RT2RT2RT2RT2RT2RT2RT2
1/4: RT* 1/10: RT10

3/4: RT2RT2RT2 3/10: RTART2RT?

5/4: RTRT® 7/10: RT2RT?RT?

7/4: RTRT3RT2RT? 9/10: RT2RT2RT2RT2RT2RT2RT2RT2RT2
9/4: RTRT2RT® 11/10 : RTRT!!

11/4: RTRT2RT3RT2RT?2 13/10 : RTRTSRT2RT?

13/4: RTRT2RT2RTS 17/10 : RTRT3RT2RT*

15/4: RTRT?RT?RT3RT?RT? 19/10: RTRT3RT?2RT?2RT2RT?RT2RT2RT2RT?
17/4: RTRT2RT2RT2RT® 21/10: RTRT2RT!!

19/4: RTRT2RT2RT2RT3RT2RT? 23/10: RTRT2RTSRT2RT?

21/4: RTRT2RT2RT2RT2RTS 27/10: RTRT2RT3RT2RT*

23/4: RTRT?RT2RT?RT2RT3RT2RT? 20/10: RTRT2RT3RT2RT?RT2RT2RT?RT?RT2RT?
1/5: RTS 1/11: RTM

2/5: RT3RT? 2/11: RTSRT?

3/5: RT2RT3 3/11: RTART3

4/5: RT2RT2RT2RT2 4/11: RT3RT?

6/5: RTRTS 5/11: RT3RT2RT2RT2RT2

7/5: RTRT*RT? 6/11: RT2RTS

8/5: RTRT3RT3 7/11: RT2RT3RT2RT?2

9/5: RTRT3RT2RT2RT? 8/11: RT2RT2RT3RT?

11/5: RTRT2RT® 9/11: RT2RT2RT2RT2RT3

12/5: RTRT2RT*RT? 10/11: RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
13/5: RTRT2RT3RT3 12/11: RTRT!?

14/5: RTRT2RT3RT2RT2RT? 13/11: RTRTTRT?

1/6 : RT® 1/12: RT!2

5/6: RT2RT2RT2RT2RT?2 5/12: RT3RT2RT3

7/6: RTRT" 7/12: RT2RT*RT?

11/6 : RTRT3RT2RT2RT2RT? 11/12: RT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
13/6 : RTRT2RT" 13/12: RTRT3

17/6 : RTRT?RT3RT?RT2RT2RT?2 17/12: RTRT*RT2RT3

19/6 : RTRT2RT2RT7 19/12: RTRT3RTART?2

23/6: RTRT2RT2RT3RT2RT2RT2RT? 23/12: RTRT3RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
25/6: RTRT2RT2RT2RT7 25/12: RTRT2RT13

29/6 : RTRT?RT?RT?RT3RT2RT?RT2RT? 29/12: RTRT2RT*RT2RT3

31/6: RTRT2RT2RT2RT2RT7 31/12: RTRT2RT3RT*RT?

35/6: RTRT2RT2RT2RT2RT3RT2RT2RT2RT? 35/12: RTRT2RT3RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?2
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—1/1:
—2/1:
—3/1:
—4/1:
—5/1:
—6/1:
—7/1:
—8/1:
—9/1:

—10/1 :
—11/1:
—12/1:

—1/2:
—3/2:
—5/2:
—7/2:
—9/2:

—11/2:
—13/2:
—15/2:
—17/2:
—19/2:
—21/2:
—23/2:

—1/3:
—2/3:
—4/3:
—5/3:
—7/3:
—8/3:

—10/3:
—11/3:
—13/3:
—14/3:
—16/3 :
—17/3 :

—1/4:
—3/4:
—5/4:
—7/4:
—9/4:

—11/4:
—13/4:
—15/4 :
—17/4 :
—19/4:
—21/4:
—23/4:

—1/5:
—2/5:
—3/5:
—4/5:
—6/5:
—7/5 :
—8/5:
—9/5:

—11/5:
—12/5:
—13/5:
—14/5 :

—1/6:
—5/6:
—7/6:

—11/6:
—13/6:
—17/6:
—19/6 :
—23/6:
—25/6 :
—29/6 :
—31/6:
—35/6:

710
711

12

TRT?

T2 RT?

T3 RT?

T4 RT?

75 RT?

76 RT?

77 RT?

T8 RT2

79 RT2

710 g2

711 g2

712 g2

TRT2RT?

TRT3

T2RT2RT?2

T2 RT3

T3 RT2RT?

T3 RT3

T4 RT2RT?

T4 RT3

T5 RT2RT?2

T5 RT3

T RT2RT?

76 RT3
TRT2RT2RT?2

TRT?

T2 RT?RT2RT?

T2 RT?

T3 RT2RT2RT?

T3 RT4

T4 RT2RT2RT?

T4 R

75 RT2RT2RT?

75 RT4

T RT2RT2RT?

76 R
TRT?2RT2RT?2RT?
TRT2RT3

TRT3 RT?

TRT®
T2RT2RT2RT2RT?
T2RT2RT3

T2 RT3 RT?2

T2RTS

T3 RT?2RT?RT?RT?
T3 RT2RT3

T3 RT3 RT?

T3 RTS
TRT2RT2RT2RT2 RT?
TRTS
T2RT2RT2RT2RT2RT?
T2 RTS

T3 RT2RT2RT2RT2RT?
73 RTS

T4 RT2RT2RT2RT? RT?
74 RTS
T5RT2RT2RT2RT2RT?
75 RTO

TS RT2RT2RT2RT? RT?
76 RTS

—1/7:
—2/7:
—3/7:
—4/7:
—5/7:
—6/7:
—8/7:
—9/7:
—10/7 :
—11/7:
—12/7:
—13/7:
—1/8:
—3/8:
—5/8:
—7/8:
—9/8 :
—11/8:
—13/8:
—15/8 :
—17/8 :
—19/8 :
—21/8:
—23/8:
—1/9:
—2/9:
—4/9:
—5/9:
—7/9:
—8/9:
—10/9 :
—11/9:
—13/9:
—14/9 :
—16/9 :
—17/9 :
—1/10:
—3/10:
—7/10 :
—9/10 :

—11/10 :
—13/10 :
—17/10 :
—19/10 :
—21/10 :
—23/10 :
—27/10 :
—29/10 :

—1/11:
—2/11 :
—3/11 :
—4/11 :
—5/11:
—6/11 :
—7/11:
—8/11:
—9/11 :

—10/11 :
—12/11 :
—13/11 :

—1/12:
—5/12:
—7/12:

—11/12:
—13/12:
—17/12:
—19/12:
—23/12:
—25/12 :
—29/12:
—31/12:
—35/12 :

TRTZRT2RT2RT2RT2RT?

TRT2RT2RT3

TRT2RT?

TRT3RT2RT?

TRT*RT?

TRT7

T2RT?RT2RT?RT2RT?RT?

T2RT2RT2 RT3
T2 RT2RT*

T2RT3RT2RT?

T2 RT4RT2

T2 RT7

TRT2RT2RT2RT2RT2RT2RT?

TRT2RT3RT?

TRT3 RT3

TRTS

T2RT2RT2RT2RT2RT2RT2RT?

T2 RT2RT3 RT?

T2 RT3 RT3

T2RT8

T3 RT2RT2RT?RT?2RT2RT? RT?

73 RT2RT3 RT?

T3 RT3 RT3

T3 RTS8

TRT?RT?RT?RT?RT?RT?RT?RT?

TRT?2RT2RT2RT3

TRT2RTS

TRT3RT2RT2 RT?

TRTS RT?

TRT?
T2RT2RT2RT2RT2RT2RT2RT2RT?2
T2RT2RT2RT2RT3
T2RT2RT®
T2RT3RT2RT2RT?

T2 RTSRT?

T2 RTY

TRT2RT2RT2RT2RT2RT2RT2RT2 RT?

TRT2RT2RT?

TRT*RT2RT?

TRT10
T2RT2RT2RT2RT2RT2RT2RT2RT2RT?
T72RT2RT2RT
T2RT*RT2RT?

72 RT10
T3RT2RT2RT2RT2RT2RT2RT2RT2RT?
T3 RT2RT2RT

T3 RT4RT2RT?

73 RT10

TRT2RT2RT?2RT2RT2RT2RT2RT2RT2RT?

TRT2RT2RT2RT2RT3

TRT2RT2 RT3 RT?

TRT?RT3RT?2RT?

TRT?2RTS

TRT3RT2RT2RT2RT?

TRT3 RT?

TRT4RT3

TRTS RT?

TRrT!!
T2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?2
T2RT2RT2RT2RT2RT3

TRT?RT2RT?RT2RT?2RT2RT?2RT2RT?2RT2RT?

TRT?2RT*RT?

TRT3RT2RT3
TRT12
T72RT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
T2 RT2RT*RT?

T2RT3RT2RT3

T2 RT12

T3 RT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
T3 RT2RT4RT?

T3 RT3 RT2 RT3

T3 RT12
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9 Avoiding Infinity

For some reason, many people are disturbed by the fact theat aummber which we called “infinity” has to
be added to the rational numbers if we wish to represent alipte tangles. You can use this as a discussion
point to remind the students that the process of adding itenosir number systems is old and commonly
done.

For example, the natural numbers are usually the first syatemmave, but if you want an inverse for addition
that always works, you've got to add the negative numberkdmtto create the integers. Then, if you want
to be able to invert multiplication (except by zero), you chée add all the rational numbers to the integers.
To solve equations like? = 2, you find a need to add the algebraic numbers. This contimugetreals and
the complex numbers. We're just extending the rationalssiightly different way to make a number system
to represent tangles.

But another way to look at it might be justified by the idea ttheg numerical operation corresponding to
Rotate mapsx to —1/x. If we talk about the slope: of a line in the plane, the slope of a line perpendicular
to it has slope-1/m: exactly the same operation.

Instead of numbers to represent tangles, use lines fronrithia that pass through integer lattice points. This
includes, of course, the vetical line (passing thro(@t)) and (0, 1) that has “undefined” slope, but from a
geometric viewpoint, this is just another line).

TheRotate command corresponds to rotating the lined9y about the origin.

The Twist command is a little bit trickier: toTwist” a line, select a lattice point on the line that has a non-
negativez-coordinate (other tha(0, 0)), move that point up by the-coordinate of the point, and the new
line passes through that new point and the origin. Mathexallij if the lattice point has coordinatés, y),
then the new lattice point will have coordinates y + x). This is exactly what we did before: the fraction
y/x was converted by &wist command tay/z + 1 = (y + x)/z. Check that the right thing happens for the
vertical line.

Figure 5: Lines corresponding to tangles
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Figure 5 illustrates both operations. On the left side offihere is a plot of the line having slogg’3 and
that line rotated0° having slope-3/5. If we were trying to reduce to zero the tangle corresponthbrig'3

we would first issue th®otate command yielding a tangle corresponding-t8/5. Next, we would issue a
Twist command and graphically that corresponds to the operatigheoright. A lattice point with: > 0 on
the line is selected (in this casé, —3)) and that point'sz-coordinate is added to iggcoordinate, yielding
(5,2). The new line passes through the origin 4b®R).

There are a couple of other interesting features that caedmeis the figure. The rational numbers that can
be associated with tangles, when reduced to lowest terrhbeviepresented by points that are “visible” from
the origin. For example, if you were standing at the origiokiog at the point(3, 5), the point(6, 10) is
“hidden” behind it. In the figure, only visible points are inded.

Second, we apply @wist command only when the line corresponding to our tangle hasgative slope.
Since we only increase by the amount corresponding tactheordinate, the resulting line, once it has a
positive slope, will never have a slope of more tH&f. When such a line is rotated, the rotation effectively
swaps ther andy coordinates (and flips one of the signs), so the resultingesponding fraction has a
smaller denominator.

10 Algebraic Considerations
If we ignore the ropes and just look at the algebra involvee ,ane basically considering the interaction of
two mathematical functions under function composition:
tz) = z+1
r(z) = —1/x
If we applyt three times followed by to any input number, the result is:
r(tt(t(x)))) =r(x +3) = —-1/(z + 3).

Note the apparent reversal of the operations due to theifuradtnotation:t is applied first tar, then another
application to to that, and so on.

We can apply any combination bandr to an input value, in any order, but some applications arefficient”

in the sense that if we applytwice in a row, it's as if we did nothing, sinedr(z)) = z. It is often useful
in mathematics to have a symbol for the “do nothing” opergtior, as it is ususally called, the identity
operation. Here we will call that do-nothing operationn other words,

i(z) = x.

We can indicate that fact that the application-divice in a row is the identity function as:

Are there any other simplifications to be found?
The answer is yes, and it is easy to check algebraically that:

tr(t(r(t(r(2)))))) = = = i(2).
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Here’s the proof:

t(r(t(r(t(r(z)))))) t(rt(r(t(=1/2)))))
= t(r(t(r(1 —1/x))))
= Ur(t(z/(1—2))))
= t(r(1/(1—x)))
= t(z—-1)

It is also easy to show tha{t(r(¢t(r(t(x)))))) = i(z) (note the reversed order). This can be shown with
a calculation similar to the one above or by appealing to 8soaativity of function composition, or by
knowing a bit of group theory. The bottom line, however, iattthe sequenc&'RT R will unto aT. A
mathematician would write this a8:~! = RTRTR.

This provides a trivial (but often very inefficient) methadundo any sequence of twists and rotates. Imag-
ine thata, b, ¢, ...,y, z are either twists or rotates (in any order), and that you lzmied the sequence:
abced - - - z t0 a tangle. To undo that sequence, you first would undo thethasy you did, namely,z,
then you'd undoy, and so on, and finally, undg thenb, thena. For example, to undo the sequence
T3RT = TTTRT, you would apply:

T'R'T'T7'T~! = (RTRTR)R(RTRTR)(RTRTR)(RTRTR).

Notice, of course, that this sequence contains places where than oneR is applied at a time, and since
each suchRk can undo the previous one, we obtain:

(RTRTR)R(RTRTR)(RTRTR)(RTRTR) = RTRTR)*TRTR?*TRTR*TRTR
RTRTRTRT?RT?RTR.

But the term on the right can be simplified even more, sinceRi& 7 RT on the left does nothing. Thus,
the inverse o 3RT is RT?RT?RTR.

One nice way to illustrate this physically is using a solieqa of wood with four cords attached to the corners
as in Figure 6.

\

:TAN GL E\
v \

Figure 6: Tangle Board

The “tangle” is a chunk of wood, so it can never be untangled, you can hand one end to each of four
persons as was done in earlier, beginning with the text “TARGfacing the audience and right-side up.
Then do &' RT RT R and see that the board returns exactly to its original caiéon.
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10.1 Group Theory

All of the above can be used as an introduction to a subjetécc&Group Theory”. Volumes are written
about the subject, but the operatidfisand R and their combinations form an infinite group. A group is a
mathematical object that consists of a set of objét{En this case, the various combinations®fandT),
and an operatiom on those objects (in this case, their combination), satigfthe following four axioms:

1. The operatior is closed. In other words, il and B are any two objects it¥, thenA « B is also inG.

2. The operatior is associative. In other words, 4, B andC are any three objects ifi, then(A x B) x
C=Ax(Bx(C).

3. There exists an identity objetin G. In other words, ifA is any object inG, thenAx I = I« A = A.
4. For every object! in G, there is an inverséd ! in G suchthatd * A=! = A='A = I.

In the case of our tangle group, the element§ iare simply finite lists of? andT". Inverses can be calculated
as described above, and the identity is the “do nothing” atp@m, or equivalentlyR R. We have omitted the
operation« in our description, but you can imagine it being between aaiy @f letters, soRTT RT could
have been writteti? « 1"+« T« R T.

What makes our group a bit more interesting is that arbitrénipgs of R andT' can often be simplified
because of the condition8R = I and(TR)? = I.

In the last section, we said that "the inverselBfRT is RT?RT?RTR’. Let's see why.

If it is the inverse, then applying one followed by the otheowsld yield the identity. In other words, it should
be true that:
T3RTRT?RT*RTR = I,

and we should be able to show that it is using only the two itdestkR? = I and (T'R)* = I (which is
equivalent to (why?YRT)? = I). These last two can also be writt€fi:= RTRTR andR = TRTRT, So:

T®RTRT?RT?RTR = TTTRTRTTRTTRTR
= TT(TRTRT)TRTTRTR
= TT(R)TRTTRTR
= T(TRTRT)TRTR
= T(R)TRTR=(TR)*=1

If you happen to already know something about group thebsn the tangle group is technically the free
group on two generatorg and7’, modulo the following identitiesk? = I and(TR)? = I.
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11 Sample Tangles

When you run this circle for the first few times, it's easy to makithmetic mistakes, since you need to do
arithmetic while you're trying to do everything else. Whalidws are a few examples that you can do by
rote: have the kids do the given sequence, and make surehthablution sequence is the one described
afterwards.

The "Sequence” begins withh = 0/1 and shows how each step generates the next fraction. Thefrat
the end represents the result of the entire sequence. Thait®l represents the shortest correct sequence
that will return the ropes to the solved) (state.

Sequence: TTT

0O~ 1 7 2 7 3
- — - — - — =
1 1 1 1
Solution: RTRTTRTT
3eplr2er 3 r-1r1r=27r-1r710
1 3 3 2 2 2 1 1 1
Sequence: TTTRT
O0r 1 72273 r -1 172
1 1 1 1 3 3
Solution: RTTRTT
2 r 317 -1 11 r -2 7 -1 7 0
- —— — - — — — — — =
3 2 2 2 1 1 1
Sequence: TTTRTTTTR
O r 1 7 2 1 3 r -1 7 2 75 7 8 7 11 p -3
- — - - — - — — — - — - — - — — — —
1 1 1 1 3 3 3 3 3 1
Solution: TRTTRTTRTTTRTT
S r 8 r -7 =375r 87 3 r2r 573711
11 11 8 8 8 5 5 5 2 2 2
rlr =27 -1 70
2 1 1 1
Sequence: TTTTRTTTT
O0r 172272374 r -1 372771l 715
1 1 1 1 1 4 4 4 4 4
Solution: RTRTTRTTRTTTRTTRTT
5 p -4 7 11 p =15 7 -4 » 7 p —-11 7 -4 7 3 p =7 7 —4
—_— — — — —_— = — = — = — = — = — —
4 15 15 11 11 11 7 7 7 3 3
rtzr2r 32 1rls 21709
3 3 2 2 2 1 1 1

If you are confident of your arithmetic, | have found that sertiangle to use is-17/43. Using the methods
of Section 8.4, start witl7/43 on the blackboard and grind that down to zero (using only nosthhe
blackboard). Then reverse the steps, starting from a zegigdo obtain a tangle represented-by7/43.

It is a fairly long process, but it builds the suspense. Ti@g@ twer this tangle, and the nice thing is that it
untangles quickly, and in fact, ends with nifwist commands in a row!

21



