The Ballot Problem

Marc Renault

This web page is designed to accompany the article Lost (and Found) in Translation: André’s Actual Method and its Application to the Generalized Ballot Problem.  This article appeared in the American Mathematical Monthly, April 2008.

 

I gave a 15-minute talk on this at MathFest in August 2007.  Here are the slides.

 

I have also written the article Four Proofs of the Ballot Theorem, which appeared in Mathematics Magazine, December 2007.

 

 

 

The Ballot Problem

 

Suppose that candidates  A  and  B  are in an election.  A  receives  a  votes and  B  receives  b  votes, with  a > b.

 

The Ballot Problem: How many ways can the  a + b  votes be arranged so that  A  maintains a lead throughout the counting of the ballots?

Answer: .

 

 

The Generalized Ballot Problem:  Suppose  a > kb  for some positive integer  k.  How many ways can the  a + b  votes be arranged so that  A  always has more than  k  times as many votes as  B  throughout the counting of the ballots?

Answer: .

 

(Some authors refer to both of the above as the ballot problem, and use “generalized ballot problem” for something even more general.)

 

 

Web Resources

 

MathWorld

Biography of J. Bertrand

 

 

Articles

 

The following articles were cited in Lost (and Found) in Translation

The three article from 1887 were found at http://math-doc.ujf-grenoble.fr/RBSM/.

The two articles from 1923 were found at http://retro.seals.ch/digbib/home.

 

1887    J. Bertrand, Solution d’un problème, Comptes Rendus de l’Académie des Sciences, Paris 105 (1887) p. 369.
Original           Translation

 

1887    É. Barbier, Généralisation du problème résolu par M. Bertrand, Comptes Rendus de l’Académie des Sciences, Paris 105 (1887) p. 407.
Original           Translation

 

1887    D. André, Solution directed du problème résolu par M. Bertrand, Comptes Rendus de l’Académie des Sciences, Paris 105 (1887) 436–437.
Original           Translation

 

1923    J. Aebly, Démonstration du problème du scrutin par des considérations géométriques, L’enseignement mathématique 23 (1923) 185–186
Original           Translation

 

1923    D. Mirimanoff, A propos de l’interprétation géométrique du problème du scrutin, L’enseignement mathématique 23 (1923), 187–189.
Original           Translation

 

1947    A. Dvoretzky and Th. Motzkin, A problem of arrangements,  Duke Math. J. 14 (1947) 305–313.

 

1991    P. Hilton and J. Pedersen, Catalan numbers, their generalizations, and their uses, Math. Intell. 13 (1991) 64–75.

 

2003    I.P. Goulden and Luis G. Serrano, Maintaining the Spirit of the Reflection Principle when the Boundary has Arbitrary Integer Slope, J. Combinatorial Theory (A) 104 (2003) 317-326.
Article is available from Goulden’s web site.

 

 

Some Sources Citing the Reflection Method and André

Please note: Many excellent articles and reputable sources claim (incorrectly) that André used the reflection method.  I have created this list not to question the quality of the sources, but only to show the prevalence of the misattribution.  Sources are listed starting with the most recent.