J. Bertrand, Solution d'un problème, Comptes Rendus de l'Académie des Sciences, Paris 105 (1887) p. 369.

THEORY OF PROBABILITY. - Solution of a problem;

 by Mr. J. Bertrand.Suppose that two candidates A and B are in an election. The number of the voters is μ. A obtains m votes and is elected, B obtains $\mu-m$. Find the probability that, during the counting of the votes, the number of votes for A always exceeds those of his competitor.

The required probability is $(2 m-\mu) / \mu$. The proof is based on the following formula which is easy to explain.

If $P_{m, \mu}$ indicates the number of combinations which, in the counting of the votes, are favorable to the required event, one has

$$
P_{m+1, \mu+1}=P_{m, \mu}+P_{m+1, \mu} .
$$

The general expression of $P_{m, \mu}$ results from this formula, but it seems probable that such a simple result could be shown in a more direct way.

If the number of the voters is 60 , it is necessary that the elected candidate obtains 45 votes so that the probability of preserving the majority throughout the poll is equal to $1 / 2$.

