The connection between our construction and the original Hilton-Pedersen con-
struction is that for an acute rational angle 6, = p,7/n with odd denominator n,
the succeeding angle 6,.; = A(6;) has even numerator p;,; = 2p; if /4 > 6, =
F (6y+1), and has odd numerator p;,; =n — 2p; if /4 < 6, = S(6+1). Thus our cri-
terion becomes the Hilton-Pedersen criterion reversed in time: py = A4 if pry =
A ;. Moreover, the sequence {oy} of folds and switchfolds generated by our construc-
tion is periodic with some period N, and is the same as the Hilton-Pedersen sequence,
but reversed in order. If oy = ¢, then the angles oy generated by the Hilton-Pedersen
construction and ¢, generated by our construction are equal when k is a multiple of
N. Our result then implies the Hilton-Pedersen result that {¢y;} converges to S.

Note also: From one of the referees we learned that the Hilton-Pedersen construc-
tion in some respects resembles an earlier, much-studied method of S. Fujimoto for
folding a length of paper into n equal parts. This method is summarized in English in
Hull [5].
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Lost (and Found) in Translation:
André’s Actual Method and Its Application to
the Generalized Ballot Problem

Marc Renault

1. INTRODUCTION. Although Désiré André is widely credited with creating the
“reflection method” to solve the ballot problem, in fact, André never employed this
method. Furthermore, while the reflection method does not provide a solution to the
generalized ballot problem, André’s original solution can be modified to produce such
a solution. We examine André’s true solution and its generalization, and explore the
connection between André and the reflection method in the mathematics literature.

2. THE BALLOT PROBLEM. In 1887 Joseph Bertrand [4] introduced the ballot
problem and its solution:

Suppose that candidates A and B are running in an election. If @ votes are cast

for A and b votes are cast for B, where a > b, then the probability that A stays
ahead of B throughout the counting of the ballots is (@ — b)/(a + b).
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Bertrand sketched a proof based on induction, and asked if a direct proof could be
given.

In that same year (and only 38 pages after Bertrand’s article in the same journal),
Emile Barbier [3] implied a generalization of Bertrand’s result: if @ > kb for some
positive integer k, then the probability that A stays ahead of B by more than a factor of
k throughout the counting is (¢ — kb)/(a + b). Barbier provided no proof of his result,
direct or otherwise.

Still in 1887 (and 29 pages after Barbier), Désiré André [2] offered a direct proof
of the solution to Bertrand’s ballot problem. A translation of André’s solution appears
in section 4.

Many excellent articles and reputable sources cite André [2] claiming that he used
the “reflection method” (or “reflection principle”) to solve the ballot problem; this is in
fact not the case. To be fair, the reflection method is a variation of André’s method of
proof. Comtet [6, p. 22] writes when introducing the method, “We first formulate the
principle of reflection, which essentially is due to André.” However, it is not accurate
to say that André actually employed the reflection method in his proof.

We first look at the reflection method and see why it is not readily applicable to the
generalized ballot problem. Then, we present a translation of André’s original proof,
and based on that, we provide a proof of the generalized ballot problem. Finally, we
consider the occurrence of the reflection principle throughout the literature and its
association with André.

3. THE REFLECTION METHOD. We can express ballot permutations as lattice
paths in the Euclidean plane by thinking of votes for A as upsteps (1, 1) and votes for
B as downsteps (1, —1). Ballot permutations (or paths) that satisfy the ballot problem
are called “good,” while those that do not are called “bad.” Feller [9, ch. III] gives a
nice account of the reflection method.

The Ballot Problem. Given positive integers a, b with a > b, find the number of
lattice paths starting at the origin and consisting of a upsteps (1, 1) and b downsteps
(1, —1) such that no step ends on the x-axis.

Solution via reflection. Let T denote the terminal point of the path, (a + b, a — b).
Since every good path must start with an upstep, there are as many good paths as there
are paths from (1, 1) to 7' that never touch the x-axis.

The set of paths from (1, 1) to T that do touch the x-axis somewhere is in one-to-one
correspondence with the set of all paths from (1, —1) to T'; this is seen by reflecting
across the x-axis the initial segment of the path that ends with the step that first touches
the x-axis. Subtracting the number of these paths from the number of all paths from
(1, 1) to T produces the number of good paths:

a+b—1 a+b—1 _a—b a+b =
a—1 b—1 Ca+b a ’
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In the generalized ballot problem, votes for A are upsteps (1, 1), votes for B are
downsteps (1, —k) and we wish to find how many of these paths stay above the x-axis
after the origin.

The difficulty in generalizing the reflection method is that when one reflects such
a lattice path, the result does not have the required types of upsteps and downsteps.
Hilton and Pedersen [12] solve the general case by a completely different method
after commenting, “André’s Reflection Method does not seem to be readily applicable
to obtaining a formula corresponding to [the general case]” (see also [11, pp. 220-
233]). Goulden and Serrano [10] also note that while there are many solutions to the
generalized ballot problem in the literature, “there appears to be no solution which is
in the spirit of the reflection principle.” They go on to provide a nice proof that rotates
the initial path segment by 180°; even so, they acknowledge that their proof does not
specialize to the reflection method when k = 1. (As an interesting side note, rotating a
path is equivalent to writing a ballot permutation in reverse order, and Uspensky [14,
p. 152] used this method to solve the ballot problem in 1937.)

4. ANDRE’S ACTUAL METHOD. André was the first to solve the ballot problem
by subtracting the number of bad ballot permutations from the number of all pos-
sible ballot permutations. This, of course, is also the approach taken by the reflection
method. However, whereas the reflection method modifies an initial segment of a lat-
tice path (equivalently, a ballot permutation), André uses no geometric reasoning and
he interchanges two portions of a ballot permutation. A translation of his solution
follows; the two phrases in brackets are clarifying remarks not found in the original

paper.

The number of possible outcomes is obviously the number of permutations one
can form with a letters A and b letters B.

Let Q,, be the number of unfavorable outcomes. The permutations corre-
sponding to them are of two kinds: those that start with B, and those that start
with A.

The number of unfavorable permutations starting with B equals the number of
all permutations which one can form with a letters A and b — 1 letters B, because
it is obviously enough to suppress the initial letter B to obtain the remaining
letters.

The number of unfavorable permutations starting with A is the same as above,
because one can, by a simple rule, make a one-to-one correspondence with the
permutations formed with a letters A and b — 1 letters B. This rule is composed
of two parts:

(1) Given an unfavorable permutation starting with A, one removes the first
occurrence of B that violates the law of the problem [i.e., causes the number
of B’s to equal the number of A’s], then one exchanges the two groups sepa-
rated by this letter: one obtains thus a permutation, uniquely determined, of a
letters A and b — 1 letters B. Consider, for example, the unfavorable permuta-
tion AABBABAA, of five letters A and three letters B; by removing the first
B that violates the law, one separates two groups AAB, ABAA; by exchanging
these groups, one obtains the permutation ABAAAA B, formed of five letters A
and two letters B.

(2) Given an arbitrary permutation of a letters A and b — 1 letters B, one
traverses it from right to left until one obtains a group where the number of A’s
exceeds [by one] the number of B’s; one considers this group and that which
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the letters placed at its left form; one exchanges these two groups, while placing
between them a letter B: one thus forms an unfavorable permutation starting with
A that is uniquely given. Consider, for example, the permutation ABAAAAB,;
while operating as described, one divides it in two groups ABAA, AAB; by
exchanging these groups and placing the letter B between them, one forms the
unfavorable permutation AABBABAA.

It results from all the above that the total number of unfavorable outcomes is
twice the number of permutations one can form with a letters A and b — 1 letters
B....

And so André finds that the number of good ballot permutations is
a+b 2a+b—1 _a—bfa+b
a a T a+b\ a )
5. SOLVING THE GENERALIZED BALLOT PROBLEM. We now apply

André’s method to the generalized ballot problem. This solution makes crucial use of
the sets [3;, first considered in [10].

The Generalized Ballot Problem. Given positive integers a, b, k with a > kb, find
the number of lattice paths starting at the origin and consisting of a upsteps (1, 1) and
b downsteps (1, —k) such that no step ends on or below the x-axis.

Solution. For 0 < i < k let B; denote the set of bad paths whose first bad step ends i
units below the x-axis (observe that the paths in 3; necessarily start with a downstep).
Clearly these k + 1 sets are disjoint and their union is the set of all bad paths. Let A
be the set of all paths consisting of a upsteps and b — 1 downsteps, without regard to
location in the plane; |A] = (“**~"). We prove that |B;| = |.A] for each i in the range
0 < i < k by providing a one-to-one correspondence between I5; and A.

f -X- +D+—Y— —Y— -X- /

Figure 1. Example withk =3. XDY € Byand Y X € A.

Given a path P € B; we can write P = X DY where D is the first downstep that
ends on or below the x-axis (note that X is empty if i = k). The path Y X is then
uniquely determined and is an element of .A.

Given a path Q € A, scan the path from right to left until a vertex is found lying
k — i units below the terminal vertex of Q (note that this vertex is the terminal vertex
of Q itself if i = k). Such a vertex must exist since the initial vertex of Q lies more
than k£ units below the terminal vertex of Q. Write Q = Y X, where Y and X are
the paths joined at that vertex. Construct path P = X DY by interchanging X and Y
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and inserting a downstep D between them. Translating P to start at (0, 0), we see X
touches the x-axis only at the origin, and X D ends i units below the x-axis; hence
P e B,’.

Therefore, the number of good paths is

<a+b) <a—|—b—1) a—kb(a—i—b)

—(k+1 = ) [
a a a+b a

6. ANDRE AND THE REFLECTION METHOD. When did the reflection method
make its first appearance as a solution to the ballot problem? Bertrand’s textbook on
probability [5, p. 18], first published in 1888, solves the ballot problem exactly as
André did. In the following years, evidently many other minor variations appeared
(see [8] and the references therein).

In 1923 Aebly [1] conceives of ballot permutations as paths starting from a corner
on a rectangular grid, and he observes a certain symmetry of bad paths across the di-
agonal. Mirimanoff [13] (the very next article in the same journal) builds on Aebly’s
observations and relates this symmetry to ballot permutations of A’s and B’s by apply-
ing the transposition (A, B) to an initial segment of a bad ballot permutation. Viewed
geometrically, Mirimanoff’s method is exactly the reflection method we know today.

When did authors start claiming that André actually used the reflection method in
his solution? This is more difficult to ascertain. In 1947 Dvoretzky and Motzkin [8]
introduce a new method of proof to the ballot problem and its generalization. They
accurately describe André’s contribution, making no mention of the reflection method,
and write “André’s proof or variations of it may be found in most of the classical
treatises on the theory of probability.” In 1957, citing this paper of Dvoretzky and
Motzkin, Feller [9, p. 66] not quite accurately writes “As these authors point out, most
of the formally different proofs in reality use the reflection principle ... ,” suggesting,
perhaps, that the reflection method was the original method of solution. Feller, four
pages later, states the reflection principle and makes the footnote, “The probability
literature attributes this method to D. André, (1887).” The first edition of Feller’s book
(1950) mentions neither André nor the reflection principle.

The earliest source that this author could find linking André and the reflection
method is J. L. Doob [7, p. 393] (1953), who writes while describing Brownian motion
processes, ““ ... similar exact evaluations are easily made . .. using what is known as
the reflection principle of Désiré André.” While these early sources do not explicitly
state that André used the reflection method in his own proof, clearly this could be
inferred, and other writers since then have naturally assumed that André did indeed
utilize the reflection method.

Original articles and translations of Bertrand, Barbier, André, Aebly, and Miri-
manoff can be found at http://webspace.ship.edu/msrenault/ballotproblem/. Many
thanks to my colleague Paul Taylor for his assistance with the translations.
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On Sums of Positive Integers
That Are Not of the Form ax + by

Amitabha Tripathi

If a and b are coprime and positive integers, then the set aZ 4+ bZ = {ax + by : x,y €
7} = 7. The subset I'(a, b) := {ax + by : x, y > 0} of aZ + bZ is only slightly more
difficult to describe. It is obvious that I'(a, b) is an infinite set, but not so obvious that
I'“(a, b) = N\ I'(a, b) is finite. Indeed, it was known to Sylvester [2] that the largest
integer in I'“(a, b) isab —a —b = (a — 1)(b — 1) — 1. It is not hard to show this,
nor even that the number of elements in I'“(a, b) is (@ — 1)(b — 1)/2. However, there
appears to be no easy way to sum the integers in I'“(a, b); for instance, a generating
function is used to do this in [1]. The purpose of this note is to show that the sum
s(a, b) can be determined directly, and quite easily. In fact, we do a bit more.

Given k positive integers a,, as, . .. , a; with ged(ay, a;, ..., a;) = 1, we consider
the complement of the set I'(ay, as, . .. , a;) = {a1x; + axx; + - -+ + agx; : x; > 0} in
N. Observe thatif n € I'(ay, a,, ... ,a), thenn +ma, € I'(ay, as, ... , a;) for every
nonnegative integer m. As a consequence of the well-ordering of N, there is a least
positive integer in I'(ay, ay, . .. , a;) among those congruent to i modulo a; for each i
with 1 <i < a; — 1. We denote this minimum by m;, and note that I'“(ay, as, . .. , a;)
can be expressed as the union of @; — 1 arithmetic progressions, one for each i between
1 and a; — 1. The i th arithmetic progressions has first term i, last term m; — a; and
common difference a;. This makes it easy to express the sum s(ay, a,, ... , ;) of the
integers in ['“(ay, ay, ... , a;) in terms of these minima.

By the definition of the m;’s, m; — a; is the largest positive integer in I'“(a,, as,

., a;) among those congruent to i modulo @;. Hence the sum of elements in
I'“(ay, ap, ... ,a;) congruent to i modulo a; is easily seen to be (m; —i)(m; +i —
ay)/2a;. It follows that
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