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Abstract. We examine integer sequences G satisfying the Fibonacci recurrence relation
Gn = Gn−1 + Gn−2 that also have the property that G ≡ 1, a, a2, a3, . . . (mod m) for some
modulus m. We determine those moduli m for which these power Fibonacci sequences exist
and the number of such sequences for a given m. We also provide formulas for the periods
of these sequences, based on the period of the Fibonacci sequence F modulo m. Finally, we
establish certain sequence/subsequence relationships between power Fibonacci sequences.

1. Introduction

Let G be a bi-infinite integer sequence satisfying the recurrence relation Gn = Gn−1+Gn−2.
If G ≡ 1, a, a2, a3, . . . (mod m) for some modulus m, then we will call G a power Fibonacci
sequence modulo m.

Example 1.1. Modulo m = 11, there are two power Fibonacci sequences:

1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 8 . . . and 1, 4, 5, 9, 3, 1, 4, . . .

Curiously, the second is a subsequence of the first. For modulo 5 there is only one such sequence
(1, 3, 4, 2, 1, 3, ...), for modulo 10 there are no such sequences, and for modulo 209 there are
four of these sequences.

In the next section, Theorem 2.1 will demonstrate that 209 = 11 ·19 is the smallest modulus
with more than two power Fibonacci sequences.

In this note we will determine those moduli for which power Fibonacci sequences exist, and
how many power Fibonacci sequences there are for a given modulus. We also establish facts
on periods of these sequences and show certain sequence/subsequence relationships between
these sequences.

2. The Number of Power Fibonacci Sequences, Modulo M

Theorem 2.1. There is exactly one power Fibonacci sequence modulo 5. For m 6= 5, there
exist power Fibonacci sequences modulo m precisely when m has prime factorization m =
pe11 p

e2
2 · · · p

ek
k or m = 5pe11 p

e2
2 · · · p

ek
k , where each pi ≡ ±1 (mod 10); in either case there are

exactly 2k power Fibonacci sequences modulo m.

Proof. 1, a, a2, . . . is a power Fibonacci sequence modulo m if and only if a is a root of f(x) =
x2 − x − 1 modulo m. The roots of f(x) are those residues of the form 2−1(1 + r) where
r2 ≡ 5 (mod m); necessarily, m is odd. Let g(x) = x2 − 5. Counting the number of solutions
to g(x) ≡ 0 (mod m) for odd m thus determines the number of power Fibonacci sequences
mod m.
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By inspection, the only solution to x2 ≡ 5 (mod 5) is 0, and there are no solutions to
x2 ≡ 5 (mod 25). Consequently, x2 ≡ 5 (mod 5e) has a solution only when e = 1, and that
solution is x ≡ 0 (mod 5). The corresponding power Fibonacci sequence is 1, 3, 4, 2, 1, 3, . . ..

Consider now the roots of g(x) (mod p) for an odd prime p 6= 5. By use of the law of
quadratic reciprocity [2,3], one finds that 5 is a quadratic residue modulo primes p of the form
p ≡ ±1 (mod 10) and 5 is a quadratic nonresidue for p ≡ ±3 (mod 10). See, e.g., [4, Lem.
3.9]. Thus, if p ≡ ±1 (mod 10) then g(x) (mod p) has two distinct roots.

Now that we know existence and number of roots of g(x) (mod p), we address the existence
and number of roots of g(x) (mod pe) for positive integers e. Hensel’s Lemma is a useful tool
here (see, e.g., [3, Thm. 2.23] or [2, §4.3]). It states that if h(x) is an integer polynomial
with root a

(
mod pi

)
, and if h′(a) 6≡ 0 (mod p), then h(x) has a root ā

(
mod pi+1

)
with the

property that ā ≡ a
(
mod pi

)
; in essence, distinct roots of h(x)

(
mod pi

)
“lift” to distinct

roots of h(x)
(
mod pi+1

)
. With g(x) = x2−5, and p a prime of the form p ≡ ±1 (mod 10), we

find that if x0 is a root of g(x) (mod p), then g′(x0) = 2x0 6≡ 0 (mod p). By Hensel’s Lemma
it follows that g(x) (mod pe) has two distinct roots for every positive integer e.

Lastly, we turn to composite moduli and make use of the Chinese Remainder Theorem from
elementary number theory [2, 3]. If m and n are relatively prime, if g(x) ≡ 0 (mod m) has s
solutions, and if g(x) ≡ 0 (mod n) has t solutions, then g(x) ≡ 0 (mod mn) has st solutions.
The statement of the theorem now follows. �

3. The Periods of Power Fibonacci Sequences

Let π(m) denote the period of the Fibonacci sequence F = 0, 1, 1, 2, 3, . . . modulo m. There
is no known explicit formula for π(m), however, it turns out [6] that if (m,n) = 1 then
π(mn) = [π(m), π(n)] — this is not difficult to see, for if S is any periodic sequence mod
mn and (m,n) = 1, then its period is the least common multiple of the period of S taken
mod m and the period of S taken mod n. For m > 2 it is known that π(m) is even (due to
Wall [6, Thm. 4]; see [4, Thm. 3.1] for a simpler proof). Also, for any integer sequence G
satisfying the Fibonacci recurrence relation Gn = Gn−1 + Gn−2, it is known that the period
of G mod m divides π(m) [6]. The main result in this section, Theorem 3.3, establishes a
relationship between π(m) and the period of power Fibonacci sequences mod m.

Although there is no known formula for π(m), the interested reader should refer to [5]
and [1] for discussions on computing π(m).

If r is a square root of 5 modulo m, then 2−1(1 + r) and 2−1(1 − r) are conjugate roots
of f(x) = x2 − x − 1 (mod m), and the product of these roots is congruent to −1 mod
m. If (a,m) = 1, then the order of a modulo m is the least positive integer i such that
ai ≡ 1 (mod m). We will denote the order of a modulo m by |a|m or often, if the context is
clear, simply by |a| (not the absolute value of a!). Observe that if a is a root of f(x) (mod m),
then |a| is exactly the period of the power Fibonacci sequence 1, a, a2, . . . modulo m.

We first dispose with a technical lemma which will be useful in a couple proofs to follow.

Lemma 3.1. Let p be an odd prime and let e be a positive integer. If x2 ≡ 1 (mod pe) then
x ≡ ±1 (mod pe).

Proof. If x2 ≡ 1 (mod pe), then (x + 1)(x − 1) ≡ 0 (mod pe). If p|(x + 1) and p|(x − 1),
then p|2; but this is a contradiction since p is odd. Thus, either x + 1 ≡ 0 (mod pe) or
x− 1 ≡ 0 (mod pe). �

The main result of this section, Theorem 3.3, is largely a proof by induction, and the
following lemma establishes a base case for the induction.
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Lemma 3.2. Let p be a prime of the form p ≡ ±1 (mod 10), and let α and β be the two roots
of f(x) = x2 − x− 1 (mod pe). Without loss of generality, assume |α| ≥ |β|.
(a) If π(pe) ≡ 0 (mod 4), then |α| = |β| = π(pe).
(b) If π(pe) ≡ 2 (mod 4), then |α| = 2|β| = π(pe).

Proof. Our key observation is that αβ ≡ −1, and so

αnβn ≡ (−1)n (mod pe)

for any n. Now if |α| = |β| = n, then 1 ≡ αnβn ≡ (−1)n and so n must be even. Since

n is even and p is odd, Lemma 3.1 implies αn/2 ≡ βn/2 ≡ −1 (mod pe). Thus (−1)n/2 ≡
αn/2βn/2 ≡ (−1)(−1) ≡ 1 (mod pe). Consequently, n/2 is even and we find 4|n.

On the other hand, if |α| > |β| = n, then αn ≡ (−1)n. First we see that n = |β| must be
odd. Moreover, α2n ≡ 1, so |α| divides 2n. Since |α| > n, we conclude that |α| = 2n.

Finally, one can confirm Binet’s formula, that terms of the Fibonacci sequence modulo pe

are given by Fn ≡ (α− β)−1(αn − βn). Thus, π(m) ≤ [|α|, |β|] = |α|. Since the period of any
integer Fibonacci sequence modulo m divides π(m), we must conclude that |α| = π(pe). �

We are now ready to state our main result on the periods of power Fibonacci sequences.

Theorem 3.3. Let m = pe11 · · · p
ek
k , a product of primes of the form pi ≡ ±1 (mod 10).

(a) If π(m) ≡ 0 (mod 4), then modulo m, every power Fibonacci sequence has period π(m).
(b) If π(m) ≡ 2 (mod 4), then modulo m, one power Fibonacci sequence has (odd) period

1
2π(m) and all the others have period π(m).

(c) If π(m) ≡ 0 (mod 4), then modulo 5m, every power Fibonacci sequence has period π(m).
(d) If π(m) ≡ 2 (mod 4), then modulo 5m, every power Fibonacci sequence has period 2π(m).

Proof. For parts (a) and (b) we wish to compute the periods of the power Fibonacci sequences
modulo m. We begin by observing that these parts are satisfied for m = pe by Lemma 3.2.
Now let m and n be relatively prime, and for induction, assume that the theorem holds modulo
m and n. We will show that it is true modulo mn as well, and this will prove parts (a) and
(b).

Denote the roots of f(x) = x2 − x − 1 (mod m) by a1, a2, . . . , as, and denote the roots of
f(x) (mod n) by b1, b2, . . . , bt. Then the st roots of f(x) (mod mn) can be denoted cij for
1 ≤ i ≤ s and 1 ≤ j ≤ t with root cij satisfying the simultaneous congruences

cij ≡ ai (mod m)
cij ≡ bj (mod n) .

One sees that |cij |mn = [|ai|m, |bj |n].
To establish part (a) of the theorem, suppose that either π(m) ≡ 0 (mod 4) or π(n) ≡

0 (mod 4). Then |cij |mn = [π(m), π(n)] or [π(m), 12π(n)] or [12π(m), π(n)], but in all cases we
find that |cij |mn = π(mn) ≡ 0 (mod 4).

To establish part (b) of the theorem, suppose that π(m) ≡ 2 (mod 4) and π(n) ≡ 2 (mod 4).
If |cij |mn = [π(m), π(n)] or [π(m), 12π(n)] or [12π(m), π(n)], then in these cases we have

|cij |mn = π(mn) ≡ 2 (mod 4). The one remaining case is |cij |mn = [12π(m), 12π(n)] = 1
2π(mn),

which is odd. This final case occurs only if ai is that single root of odd order modulo m and
bj is that single root of odd order modulo n.

For parts (c) and (d) we wish to compute the periods of the power Fibonacci sequences
modulo 5m. Once again, label the roots of f(x) = x2 − x− 1 (mod m) by a1, a2, . . . , as, and
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observe that the only root of f(x) mod 5 is the residue 3. Now the roots of f(x) mod 5m can
be denoted ci where

ci ≡ 3 (mod 5)
ci ≡ ai (mod m) .

Now |ci|5m = [|3|5, |ai|m] = [4, |ai|m]. If π(m) ≡ 0 (mod 4), then |ai|m = π(m) ≡ 0 (mod 4).
Thus |ci|5m = [4, π(m)] = π(m), and (c) is proved.

Lastly, for part (d), if π(m) ≡ 2 (mod 4), then either |ai|m = π(m) ≡ 2 (mod 4) or
|ai|m = 1

2π(m) ≡ 1 (mod 2). In the first case, |ci|5m = [4, π(m)] = 2π(m), and in the second

case |ci|5m = [4, 12π(m)] = 2π(m). �

4. Subsequence Relationships Among Power Fibonacci Sequences

Theorem 4.1. Let α and β be conjugate roots of x2 − x− 1 (mod m). Assume |α| ≥ |β|, let
A = 1, α, α2, . . ., and let B = 1, β, β2, . . ..

(a) If |α| > |β|, then B is a subsequence of A.
(b) If |α| = |β| and m = pe for a prime p ≡ ±1 (mod 10), then A and B are subsequences of

each other.

Proof. Assume the hypotheses of the theorem, and let 2n = |α|. As a first step we make the
following claim:

If αn ≡ −1 (mod m), then B is a subsequence of A.

The truth of the claim can be seen by first multiplying the congruence by α−1 to get αn−1 ≡
−α−1. Of course, since αβ ≡ −1 (mod m), we have −α−1 ≡ β, and so we find that αn−1 ≡ β.
Consequently, B is a subsequence of A.

For part (a) of the theorem, assume |α| > |β|. By Theorem 3.3, |α| = 2|β| = 2n and n is
odd. Then αβ ≡ −1 implies (αβ)n ≡ (−1)n, and since βn ≡ 1, we get αn ≡ −1. By the claim
above, we deduce B is a subsequence of A.

For part (b), first observe that (αn)2 = α2n ≡ 1 (mod pe). Lemma 3.1 now implies that
αn ≡ −1 (mod pe), and again, by the claim at the beginning of the proof, we conclude B is
a subsequence of A. Since |α| = |β|, we may switch the roles of α and β and with the same
proof also conclude that A is a subsequence of B. �

We conclude with some examples that show that Theorem 4.1 is “complete.”
Can more be said regarding part (b) of the theorem for a modulus m that is not a power

of a prime? If m = 209 = 11 · 19, then α = 195 and β = 15 are conjugate roots with
|195| = |15| = 90. Computations show us that A and B have 45 terms in common, so they
cannot be subsequences of each other. On the other hand, if m = 305 = 5 · 61, then α = 288
and β = 18 are conjugate roots with |288| = |18| = 60. In this case, computations show that
A and B are subsequences of each other.

What of the situation where α and β are both roots of x2 − x − 1 (mod m), but they
are not conjugate roots? It is very often the case that B is not a subsequence of A, but
sometimes it still can happen that B is a subsequence of A. For example, consider again the
case m = 209 = 11 · 19. Then x2 − x − 1 (mod 209) has four roots: 15, 81, 129, 195. The
conjugate pairs are (195, 15) and (129, 81), and |195| = |15| = |129| = 90, whereas |81| = 45.
If we choose α = 15 and β = 81, then B is not a subsequence of A. However, if α = 195 and
β = 81, then it turns out that B is a subsequence of A.
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