
   

Archimedes discovers the area of a parabolic segment. 

 

Archimedes (287-212 BCE)  is one of the most revered mathematicians of all time.  Math 

historian William Dunham writes, ―Archimedes stands unchallenged as the greatest 

mathematician of antiquity.  His results, which survive in a dozen books and fragments, are of 

the highest quality and show a logical sophistication and polish that is truly astounding.‖  In his 

treatise Quadrature of the Parabola he finds the area of a parabolic segment. 

 

 

1. Goal: Find the area of a parabolic segment, that is, the 

area enclosed by a parabola and a straight line. We’ll 

find the answer using calculus, then we’ll follow the 

method of Archimedes. 

 

 

2. Below is a graph of the parabola  along with the 

points  and .  Find the point  on the graph such that the -value 

of  is midway between the -value of  and the -value of . 

 

 

   
 

 

3. Find the area of triangle . 

 

4. Use calculus to find the area of the region bounded by the parabola and the line segment 

.   

 

5. Fill in the blank: the area of the parabolic segment is ____ times as large as the area of 

the triangle. 

 

6. We’ll consider a more general setting, now.  

Suppose a line intersects the parabola  

at the points  and  

(assume ).  We pick a third point, as 

before, at . 

 

 



   

7. Show that the area of triangle  is .   

    [Hint: make three trapezoids by drawing vertical lines from , , and  down to the -

axis.  Subtract the areas of the two small trapezoids from the one big trapezoid.]   

    Does your answer agree with step #3 above? 

 

8. Use calculus to find the area of the parabolic segment.  Does your answer agree with your 

result in step #5 above? 

 

9. Now we start Archimedes’ approach to showing that the 

area of the parabolic segment is  the area of the triangle. 

Notice an amazing fact that follows from #7: The area of 

the triangle depends only on the difference between  and 

, and not the actual values of  and . 

    Create two smaller triangles to ―fill in the gaps‖ as 

shown in the picture.  If the area of the big triangle is , 

then what is the area of each of the two smaller, darker 

triangles?  (Notice that each one is only ½ as wide as the 

one big triangle). 

 

10. Next, we can ―fill gaps‖ with 4 even smaller triangles, each half as wide again, then 8 

very small triangles, then 16 very very small triangles, and so on…  Justify: If the area of 

the one initial big triangle is , then the area of the parabolic segment is  

 

 

11. Prove that  , and you’ve completed the Archimedes proof! 

 

 

Postscript: Archimedes didn’t have the advantage of Cartesian coordinates (invented in the early 

1600’s) and you can imagine how this complicates the process of finding the area of the triangle 

in the parabola.  Also, although Euclid had earlier shown how to compute the sum of a geometric 

series, Archimedes didn’t follow Euclid’s method, but instead created his own way for summing 

a geometric series.  Finally, this trick of filling in a regions with infinitely many smaller shapes, 

each getting smaller and smaller is called the ―method of exhaustion‖ and is attributed to 

Eudoxus (408-355 BCE).  Archimedes, however, took the method to new heights, masterfully 

using it in many of his greatest proofs. 

 



   

Cardano and Bombelli and the solution of cubic equations 

 

The problem of solving equations has been around since antiquity.  What value of  makes the 

equation  true?  Linear equations are easy, but quadratic equations are a little harder: what 

value(s) of  satisfies the equation  ?  The quadratic equation (at least a 

rudimentary form of it) goes back to the Babylonians c. 2000 BCE: the values of  that satisfy 

the equation , are  and .  Amazingly, the 

solutions of cubic equations would not be found until the Renaissance.  Sixteenth century Italy 

was the setting for some very entertaining stories from the history of algebra.  In 1545, Gerolamo 

Cardano published Ars Magna, in which he showed that a solution to the cubic equation 

 is

 

 

 

1. Verify that this does indeed work for the equation . 

 

2. What strange thing happens with the equation ? 

 

Cardano did not know what to do with this case, but Rafael Bombelli took the challenge. He 

―invented‖ imaginary numbers to save the day. 

 

3. Verify the following statement about complex numbers:   . 

(Here you just have to know that .) 

 

4. While you are at it, verify the fact that,  . 

 

5. Show how this allows us to use Cardano’s formula even in this case. 

 

Postscript: Cardano was a crazy person; read about him on the MacTutor History of Mathematics 

website.   

 In the 1500’s negative numbers were treated with suspicion and avoided whenever 

possible.  Square roots of negative numbers where downright preposterous.  It is commonly, but 

mistakenly, thought that imaginary numbers were introduced as a tool for solving quadratics.  In 

fact, they were first used as a tool for solving cubics, as shown here. 

Although it was stated differently in Ars Magna, Cardano provided a solution to the 

―general‖ cubic equation .  In that same book, his pupil Ludovico 

Ferrari showed how to solve the general quartic equation .  At 

this point the hunt was on among mathematicians to find solutions for the general quintic 

equation.  A shock came in the mid-1820’s when Norwegian Niels Abel proved that there is no 

algebraic solution to the general quintic equation; in other words, there is no way we can 

manipulate the coefficients  in the equation  

using the rules of algebra (add, subtract, multiply, divide, take powers, extract roots) to produce a 

solution to the equation.  Amazing!



   

 Newton Generalizes the Binomial Theorem 
 

Isaac Newton (1642-1727) is regarded as the greatest mathematician of the modern era, perhaps 

rivaled only by Archimedes for the title of greatest mathematician ever.  His Philosophiæ 

Naturalis Principia Mathematica, published in 1687, is considered to be one of the most 

influential books in the history of science.  Here we look at one of his very first mathematical 

discoveries, the generalized binomial theorem. 

 

1. Expand the following powers of  : 

 

a.  
 

b.  =  

 

c.  
 

2. The Binomial Theorem states that 

 

 where  

 

 

for positive integers  and . Verify this formula for the coefficients you found in step 1. 

(Notice that the numerator in the above expression has  factors.) 

 

 

 

3. Newton wanted to figure out a similar way to expand .  Here’s Newton’s idea: 

if , then . 

a. Find a linear function  such that  other stuff of degree 

2 or higher. 

b. Find a quadratic function  such that other stuff of 

degree 3 or higher. 

c. Find a cubic function such that  other stuff of degree 

4 or higher. 

 

 

4. Use your answers to #3 above to create a Generalized Binomial Theorem for .  How 

should  be defined? 

 

5. Use your formula from #4 to find a quartic function  such that  

 other stuff of degree 5 or higher. 



   

 

 

6. Use your formula from #4 to write out the first 8 terms of . 

 

 

7. Newton used his theorem to approximate square roots.  Use your result to #6 (and a 

calculator) to approximate .  Compare this with your calculator’s approximation for 

. 

 

 

Postscript: Newton discovered the generalized binomial theorem around 1665.  Not to depress 

you, but he was your age then.  Don’t worry though – Newton makes us all look bad.  We’ll see 

that Newton’s generalized binomial theorem plays a key role in his attempt to approximate .  

By the way, the notation  was first introduced in 1826, so Newton’s real calculations were a 

bit messier.  

 One last idea – Newton’s expansion of  is the same as the Taylor series 

expansion, expanded around .  It’s worth pondering for a while whether these two 

expansions MUST, a priori, be the same.  



   

Newton Approximates  
 

A circle of diameter 1 has a circumference of .  Archimedes approximated  by inscribing and 

circumscribing polygons about a circle of diameter 1.  He found that an inscribed 96-gon has a 

perimeter greater than  and a circumscribed 96-gon has a perimeter less than , thus, 

 .  For centuries other mathematicians improved on Archimedes’s approximation 

by using polygons with more and more sides.   

 In 1593, Adriaen Von Roomen approximated  to 15 decimal places using polygons with 

 sides!   

 In 1610, Ludolph Van Ceulen approximated  to 30 decimal places using polygons with 

 sides! 

There had to be a better way! 

 

In the 17
th

 century, an entirely new method of approximating  was found: series approximation.  

Here’s how Newton approximated … 

 

 
 

1. Find the equation of the semicircle in the picture. 

a. Observe that the ―full circle‖ would satisfy the equation  . 

b. Solve for  and show that , in other words, . 

c. Use Newton’s generalized binomial theorem to show 

 

 

2. Find the area of the shaded region with calculus. 

a. Now that you have an equation for the semicircle, evaluate a definite integral to show that 

the area is 

 

 

3. Find the area of the shaded region with geometry. 

a. Find the length of . 

b. Find the area of . 

c. Notice that  is a 30-60-90 triangle.  Use this fact to find the area of sector . 

d. Notice that (area of shaded region) = (area of sector) – (area of triangle).   

Conclude that the area of the shaded region is  



   

 

 

4. Set the two expressions for area equal to each other to conclude that  

 

 

5. Use a calculator to approximate  using five terms in the series and then using six terms in 

the series.  Compare how the accuracy improves. 

 

6. There are a couple good reasons Newton chose the point  to equal .    

a. When calculating area by calculus, why is  a nice number to use? 

b. When calculating area by geometry, why is  a nice number to use? 

 

7. Let’s use Newton’s approximating method with the entire semicircle shaded. 

 

a. Use calculus to show that the semicircle has area  . 

b. Use geometry to show that the semicircle has area . 

c. Conclude that  

 

d. The above expression is much simpler than the expression we found in step 4.  Why is 

Newton’s original series approximation preferable to this one? 

 

 

Postscript:  Newton correctly approximated  to 15 digits, although he later confessed: "I am 

ashamed to tell you to how many figures I carried these computations, having no other business 

at the time." 

Mathematicians have often looked at  with curiosity, and sought to find better and better 

approximations.  The motivation is not because better approximation of  are more useful, but 

rather, the motivation comes from the challenge of creating the best possible mathematical 

method or algorithm for the approximation.  Some highlights: 

1706: John Machin was the first to compute 100 decimals of π.   

1949: the first computer, ENIAC, computed 2037 digits of  in 70 hours.   

1989: 1,011,196,691 digits 

2002: 1,241,100,000,000 digits (current record) 

 

  



   

The Harmonic Series Diverges (Nicole Oresme, 14
th

 century CE) 

 

Not much happened mathematically in 14
th

 century Europe, but at that time French cleric Nicole 

Oresme (pronounced ah-REM) undertook a detailed study of the mathematics of ratios.  His 

study led him to consider the harmonic series: . 

 

1. Consider the geometric series  

 

Euclid (c. 300 BCE) knew how to sum this series.  How would you add these terms? 

 

2. Consider the harmonic series  

 

 

Oresme proved that this ―diverges‖ with the following argument.  Explain why each step is 

true without actually adding all the junk on the left side together. 

 

1/2 ≥ 1/2  (Brilliant!) 

1/3 + 1/4 ≥ 1/2 

1/5 + 1/6 + 1/7 + 1/8 ≥ 1/2 

1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 ≥ 1/2 

 

3. Which of the following math-y statements seems to express the gist of Oresme’s argument? 

 

 

 

4. Using this fact, how many terms of the harmonic series can be added together to get a partial 

sum that is at least 3?  At least 30?  At least 300?  

 

5. Consider the infinite series   .  Determine whether the following 

statements are true or false and support your answer. 

a. If the terms of the series converge to zero, then the series must converge. 

b. If the series converges, then the terms must converge to zero. 

 

Postscript: The proof above that the harmonic series diverges is fairly straightforward, easy to 

follow, and should convince any thoughtful person of its trueness.  However, what is so apparent 

in hindsight is exceedingly difficult to discover on one’s own. (An analogy: a young piano 

student can certainly play pieces by Mozart, but it takes a genius on the level of Mozart to 

compose such pieces.) Oresme’s proof that the harmonic series diverges was ―lost‖ (or certainly 

not well-known) and not until 1689 did another—longer, more complicated—proof appear, 

penned by the extremely talented brothers Jakob and Johann Bernoulli. 


