Runs Test for Serial Randomness of Nominal Data

Equations taken from Zar, 1984

Example: the runs test is used to determine for serial randomness: whether or not observations occur in a sequence in time or over space. In geographic studies the runs test is most often used to determine whether observations are random along a transect or other linear feature. In the example below fish were sampled along a river at equal intervals, resulting in the data set:

```
```

Where A denotes rainbow trout and B denotes brown trout. We are interested in determining whether the order of the two species of trout is random or not, as opposed to the species forming groups such as:

```
A A A A A A A B B B B B B B B B B B B B B
```

or members of one species shunning other members of that species, such as:

```
```

Unlike other tests there is no equation for the runs test unless the sample size of either group is greater than 30*. One only needs to count the number of runs \(u \), a run being a series of the same nominal value when counting from left to right.

```
A A A B B A A
```

This is a run

Two Tailed Runs Test

H\(_0\) : The distribution of trout along the stream is random.

H\(_1\) : The distribution of trout along the stream is not random.

```
```

\(n_1 = 9 \) ← there are 9 occurrences of the value A.

\(n_2 = 13 \) ← there are 13 occurrences of the value B.

\(u = 8 \) ← there are 8 runs.

\(\alpha = 0.05 \)

\(u_{\text{Critical}} = 6, 17 \) ← there are 2 critical values of \(u \), if the calculated value falls between these then \(H_0 \) is accepted.

Since \(6 < 8 < 17 \) accept \(H_0 \)

The distribution of trout along the stream is random \((u_8, 0.50 > p > 0.20)\).

* In which case a z score can be calculated using the following equations:

\[
\bar{x} = \frac{2n_1n_2}{n_1 + n_2} + 1 \quad s = \sqrt{\frac{2n_1n_2(2n_1n_2 - n_1n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}} \quad z = \frac{u - \bar{x}}{s}
\]

This z score can then be compared the probabilities found in the z table.
Non-Parametric Test

If a one tailed runs test is used, we can determine whether the data are either random, non-random due to clustering, or non-random due to uniformity. Again, there are 2 critical values...

If $u <$ the lower u_{Critical} then the data are non-random due to clustering.

If $u >$ the upper u_{Critical} then the data are non-random due to uniformity.

If u falls between the lower and upper u_{Critical} then the data are random.

One Tailed Runs Test

H_0: The distribution of trout along the stream is random.

H_a: The distribution of trout along the stream is not random.

AAAAABBBBBAAAAABBBAAAAAAA

$n_1 = 16 \quad \leftarrow$ there are 16 occurrences of the value A.

$n_2 = 7 \quad \leftarrow$ there are 7 occurrences of the value B.

$u = 5 \quad \leftarrow$ there are 5 runs.

$\alpha = 0.05$

$u_{\text{Critical}} = 6, 15 \quad \leftarrow$ there are 2 critical values of u, if the calculated value falls between these then H_0 is accepted.

Since $5 < 6 < 15$ reject H_0

The distribution of trout along the stream is non-random due to clustering (u_5, $p < 0.025$).