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VOL. 11, No. 1 

Procedures for Detecting Outlying 
Observations in Samples 

FRANK E. GRUBBS* 

UT. S. Army Aberdeen Research and Development Center 
Aberdeen Proving Ground, Maryland 21005 

Procedures are given for determining statistically whether the highest observation, 
the lowest observation, the highest and lowest observations, the two highest observa- 
tions, the two lowest observations, or more of the observations in the sample are 
statistical outliers. Both the statistical formulae and the application of the procedures 
to examples are given, thus representing a rather complete treatment of tests for 
outliers in single samples. This paper has been prepared primarily as an expository 
and tutorial article on the problem of detecting outlying observations in much 
experimental work. We cover only tests of significance in this paper. 

1. SCOPE OF PAPER 

1.1 This is an expository and tutorial type of paper which deals with the 
problem of outlying observations in samples and how to test the statistical 
significance of them. An outlying observation, or "outlier," is one that appears 
to deviate markedly from other members of the sample in which it occurs. In 
this connection, the following two alternatives are of interest: 

1.1.1 An outlying observation may be merely an extreme manifestation of 
the random variability inherent in the data. If this is true, the values should be 
retained and processed in the same manner as the other observations 
in the sample. 

1.1.2 On the other hand, an outlying observation may be the result of gross 
deviation from prescribed experimental procedure or an error in calculating or 
recording the numerical value. In such cases, it may be desirable to institute 
an investigation to ascertain the reason for the aberrant value. The observation 
may even eventually be rejected as a result of the investigation, though not 
necessarily so. At any rate, in subsequent data analysis the outlier or outliers 
will be recognized as probably being from a different population than that of 
the sample values. 

1.2 It is our purpose here to provide statistical rules that will lead the experi- 
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menter almost unerringly to look for causes of outliers when they really exist, 
and hence to decide whether alternative 1.1.1 above is not the more plausible 
hypothesis to accept as compared to alternative 1.1.2 in order that the most 
appropriate action in further data analysis may be taken. The procedures covered 
herein apply primarily to the simplest kind of experimental data, i.e., replicate 
measurements of some property of a given material, or observations in a sup- 
posedly single random sample. Nevertheless, the tests suggested do cover a 
wide enough range of cases in practice to have rather broad utility. 

2. GENERAL 

2.1 When the skilled experimenter is clearly aware that a gross deviation 
from prescribed experimental procedure has taken place, the resultant observa- 
tions should be discarded, whether or not it agrees with the rest of the data 
and without recourse to statistical tests for outliers. If a reliable correction pro- 
cedure, for example, for temperature, is available, the observation may some- 
times be corrected and retained. 

2.2 In many cases evidence for deviation from prescribed procedure will 
consist primarily of the discordant value itself. In such cases it is advisable 
to adopt a cautious attitude. Use of one of the criteria discussed below will 
sometimes permit a clear-cut decision to be made. In doubtful cases the experi- 
menter's judgment will have considerable influence. When the experimenter 
cannot identify abnormal conditions, he should at least report the discordant 
values and indicate to what extent they have been used in the analysis 
of the data. 

2.3 Thus, for purposes of orientation relative to the overall problem of 

experimentation, our position on the matter of screening samples for outlying 
observations is precisely the following: 

Physical Reason Known or Discovered for Outlier(s) 
(i) Reject observation(s) 
(ii) Correct observation(s) on physical grounds 
(iii) Reject it (them) and possibly take additional observation(s) 

Physical Reason Unknown-Use Statistical Test 

(i) Reject observation(s) 
(ii) Correct observation(s) statistically 
(iii) Reject it (them) and possibly take additional observation(s) 
(iv) Employ truncated sample theory for censored observations 

2.4 The statistical test may always be used to lend support to a judgment 
that a physical reason does actually exist for an outlier, or the statistical criterion 

may be used routinely as a basis to initiate action to find a physical cause. 

3. BASIS OF STATISTICAL CRITERIA FOR OUTLIERS 

3.1 There are a number of criteria for testing outliers. In all of these the 

doubtful observation is included in the calculation of the numerical value of a 
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sample criterion (or statistic), which is then compared with a critical value 
based on the theory of random sampling to determine whether the doubtful 
observation is to be retained or rejected. The critical value is that value of the 
sample criterion which would be exceeded by chance with some specified (small) 
probability on the assumption that all the observations did indeed constitute 
a random sample from a common system of causes, a single parent population, 
distribution or universe. The specified small probability is called the "significance 
levels" or "percentage point" and can be thought of as the risk of erroneously 
rejecting a good observation. It becomes clear, therefore, that if there exists a 
real shift or change in the value of an observation that arises from non-random 
causes (human error, loss of calibration of instrument, change of measuring 
instrument, or even change of time of measurements, etc.), then the observed 
value of the sample criterion used would exceed the "critical value" based on 
random sampling theory. Tables of critical values are usually given for several 
different significance levels, for example, 5%, 1%. For statistical tests of out- 
lying observations, it is generally recommended that a low significance level, 
such as 1%, be used and that significance levels greater than 5% should not 
be common practice. (Note 1). 

3.2 It should be pointed out that almost all criteria for outliers are based 
on an assumed underlying normal (Gaussian) population or distribution. When 
the data are not normally or approximately normally distributed, the probabili- 
ties associated with these tests will be different. Until such time as criteria not 
sensitive to the normality assumption are developed, the experimenter is 
cautioned against interpreting the probabilities too literally when normality of 
the data is not assured. 

3.3 Although our primary interest here is that of detecting outlying observa- 
tions, we remark that the statistical criteria used also test the hypothesis that 
the random sample taken did indeed come from a normal or Gaussian popula- 
tion. The end result is for all practical purposes the same, i.e., we really want 
to know once and for all whether we have in hand a sample of homogeneous 
observations. 

4. RECOMMENDED CRITERIA FOR SINGLE SAMPLES 

4.1 Let the sample of n observations be denoted in order of increasing mag- 
nitude by x1 < x2 < xa3 < .** < Xn . Let xn be the doubtful value, i.e. the 
largest value. The test criterion, Tn , recommended here for a single outlier 
is as follows: 

Tn = (xn - X)/s 

where 

x = arithmetic average of all n values, and 

Note 1: In this paper, we will usually illustrate the use of the 5% significance level. Proper 
choice of level in probability depends on the particular problem and just what may be involved, 
along with the risk that one is willing to take in rejecting a good observation, i.e., if the null- 
hypothesis stating "all observations in the sample come from the same normal population" 
may be assumed. 
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TABLE 1 

Table of Critical Values for T (One-sided Test) When Standard Deviation 
is Calculated from the Same Sample 

2.5% 1% 
Significance Significance 

Level Level 

1.15 1.15 
1.48 1.49 
1.71 1.75 
1.89 1.94 
2.02 2.10 
2.13 2.22 
2.21 2.32 
2.29 2.41 
2.36 2.48 
2.41 2.55 
2.46 2.61 
2.51 2.66 
2.55 2.71 
2.59 2.75 
2.62 2.79 
2.65 2.82 
2.68 2.85 
2.71 2.88 
2.73 2.91 
2.76 2.94 
2.78 2.96 
2.80 2.99 
2.82 3.01 
2.91 
2.98 
3.04 
3.09 
3.13 
3.20 
3.26 
3.31 
3.35 
3.38 

n n - - 1) 

n(n - 1) 

Note: Values of T for n < 25 are based on those given in Reference [8]. For n > 25, the 
values of T are approximated. All values have been adjusted for division by n - 1 instead of n 

in calculating s. 

5% 
Significance 

Level 

1.15 
1.46 
1.67 
1.82 
1.94 
2.03 
2.11 
2.18 
2.23 
2.29 
2.33 
2.37 
2.41 
2.44 
2.47 
2.50 
2.53 
2.56 
2.58 
2.60 
2.62 
2.64 
2.66 
2.75 
2.82 
2.87 
2.92 
2.96 
3.03 
3.09 
3.14 
3.18 
3.21 

I n-1 ; 

Number of 
Observations 

n 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
30 
35 
40 
45 
50 
60 
70 
80 
90 

100 

Xn -X 
S 

T, -- 
s 

X1 < X2 < * *' < Xn 
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s = estimate of the population standard deviation based on the sample data, 
calculated with n - 1 degrees of freedom as follows: 

(X= f= V),-x/n(n E- 1) 

n -- 1 J n (n - 1) ) 

If x, rather than xn is the doubtful value, the criterion is as follows: 

T- = (x - xI)/s 

The critical values for either case, for the 1 per cent and 5 per cent levels of 
significance, are given in Table 1. Table 1 and the following tables give the 
"one-sided" significance levels. (In a previous ASTM tentative recommended 
practice (1961), the tables listed values of significance levels double those in the 
present practice, since it was considered that the experimenter would test either 
the lowest or the highest observation (or both) for statistical significance. How- 
ever, to be consistent with actual practice and in an attempt to avoid further 
misunderstanding, single-sided significance levels are tabulated here so that both 
viewpoints can be represented.) 

4.2 The hypothesis that we are testing in every case is that all observations in 
the sample come from the same normal population. Let us adopt, for example, 
a significance level of 0.05. If we are interested only in outliers that occur on 
the high side, we should always use the statistic Tn = (Xn - x)/s and take as 
critical value the 0.05 point of Table 1. On the other hand, if we are interested 
only in outliers occurring on the low side, we would always use the 
statistic T1 = (x - x,)/s and again take as a critical value the 0.05 point of 
Table 1. Suppose, however, that we are interested in outliers occurring on either 
side, but do not believe that outliers can occur on both sides simultaneously. 
We might, for example, believe that at some time during the experiment some- 
thing possibly happened to cause an extraneous variation on the high side or on 
the low side, but that it was very unlikely that two or more such events could 
have occurred, one being an extraneous variation on the high side and the other 
an extraneous variation on the low side. With this point of view we should use 
the statistic T, = (x, - X)/s or the statistic T1 = (x - xl)/s which ever is 
larger. If in this instance we use the 0.05 point of Table 1 as our critical value, 
the true significance level would be twice 0.05 or 0.10. If we wish a significance 
level of 0.05 and not 0.10, we must in this case use as a critical value the 0.025 
point of Table 1. Similar considerations apply to the other tests given below. 

Example 1 

As an illustration of the use of T, and Table 1, consider the following ten 
observations on breaking strength (in pounds) of 0.104-in. hard-drawn copper 
wire: 568, 570, 570, 570, 572, 572, 572, 578, 584, 596. The doubtful observation is 
the high value, x,o = 596. Is the value of 596 significantly high? The mean is 
x = 575.2 and the estimated standard deviation is s = 8.70. We compute 

Tio = (596 - 575.2)/8.70 = 2.39 

From Table 1, for n = 10, note that a T,, as large as 2.39 would occur by chance 
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with probability less than 0.05. In fact, so large a value would occur by chance 
not much oftener than 1% of the time. Thus, the weight of the evidence is 
against the doubtful value having come from the same population as the others 
(assuming the population is normally distributed). Investigation of the doubtful 
value is therefore indicated. 

4.3 An alternative system, the Dixon criteria, based entirely on ratios of 
differences between the observations is described in the literature [5] and may 
be used in cases where it is desirable to avoid calculation of s or where quick 
judgment is called for. For the Dixon test, the sample criterion or statistic 

changes with sample size. Table 2 gives the appropriate statistic to calculate and 
also gives the critical values of the statistic for the 1%, 5% and 10% levels 
of significance. 

Example 2 

As an illustration of the use of Dixon's test, consider again the observations 
on breaking strength given in Example 1, and suppose that a large number of 
such samples had to be screened quickly for outliers and it was judged too time- 

consuming to compute s. Table 2 indicates use of 

ri, = xn X- ~ for a sample size of ten. Thus, for n = 10, 
Xn 

- 
X2 

xlo -X 
XO - X2 Xlo -- 2 

For the measurements of breaking strength above, 

596 - 584= .462 
596 - 570 

= 462 

which is a little less than .477, the 5% critical value for n = 10. Under the 
Dixon criterion, we should therefore not consider this observation as an outlier 
at the 5% level of significance. This illustrates how border-line cases may be 

accepted under one test but rejected under another. It should be remembered, 
however, that the T-statistic discussed above is the best one to use for the 

single-outlier case, and final statistical judgment should be based on it. See 

Ferguson, References [6], [7]. 
Further examination of the sample observations on breaking strength of 

hard-drawn copper wire indicates that none of the other values needs testing. 
(Note 2.) 

4.4 A test equivalent to Tn (or TI) based on the sample sum of squared 
deviations from the mean for all the observations and the sum of squared de- 
viations omitting the "outlier" is given by Grubbs in [8] 

4.5 The next type of problem to consider is the case where we have the possi- 

bility of two outlying observations, the least and the greatest observation, in a 

Note 2: With experience we may usually just look at the sample values to observe if an 

outlier is present. However, strictly speaking the statistical test should be applied to all 

samples to guarantee the significance levels used. Concerning "multiple" tests on a single 

sample, we comment on this below. 
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DETECTING OUTLYING OBSERVATIONS IN SAMPLES 

sample. (The problem of testing the two highest or the two lowest observations 
is considered below.) In testing the least and the greatest observations simul- 
taneously as probable outliers in a sample, we use the ratio of sample range to 
sample standard deviation test of David, Hartley and Pearson [4]. The signifi- 
cance levels for this sample criterion are given in Table 3. An example in 
astronomy follows. 

Example 3 

There is one rather famous set of observations that a number of writers on the 
subject of outlying observations have referred to in applying their various tests 
for "outliers". This classic set consists of a sample of 15 observations of the 

TABLE 2 

Dixon Criteria for Testing of Extreme Observation (Single Sample)* 

Significance Level 
n Criterion 10% 5% 1% 

3 
4 
5 
6 
7 

if smallest value 
is suspected; 
if largest value 
is suspected. 

.886 

.679 

.557 

.482 

.434 

.941 

.765 

.642 

.560 

.507 

.988 

.889 

.780 

.698 

.736 

rl = if smallest value 
Xn-i - X is suspected; 

n - Xn_l if largest value 

n - X2 is suspected. 

if smallest value 
is suspected; 

if largest value 
is suspected. 

X 3-XI 
if smallest value 

r22 = is suspected. 
Xn-2 - Xl 

Xn - xn-2 if largest value 
X= -3is suspected; 

Xn - X3 

.479 .554 .683 

.441 .512 .635 

.409 .477 .597 

.517 .576 .679 

.490 .546 .642 

.467 .521 .615 

.492 

.472 

.454 

.438 

.424 

.412 

.401 

.391 

.382 

.374 

.367 

.360 

.546 

.525 

.507 

.490 

.475 

.462 

.450 

.440 

.430 

.421 

.413 

.406 

.641 

.616 

.595 

.577 

.561 

.547 

.535 

.524 

.514 

.505 

.497 

.489 

* From W. J. Dixon, "Processing Data for Outliers", Biometrics, March 1953, Vol. 9, No. 1, Appendix, Page 89. (Reference [5]) xl < x2 _< '- ' < x, 

XS - Xl 
r2l =- 

Xn-1 - Xi 

Xn - Xn-2 

Xn - X2 

8 
9 

10 

11 
12 
13 

14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 
25 

7 

X2 - 
XI 

rio =--= 
Xn - Xi 

Xn - Xn-1 

Xn - XI 



"vertical semi-diameters of Venus made by Lieutenant Herndon in 1846 and 

given in William Chauvenet's A Manual of Spherical and Practical Astronomy, 
Vol. II (5th ed., 1876). In the reduction of the observations, Prof. Pierce 
assumed two unknown quantities and found the following residuals which have 
been arranged in ascending order of magnitude: 

-1.40" 
-0.44 
-0.30 

Critical Values 

-0.24 
-0.22 
-0.13 

-0.05 
0.06 
0.10 

0.18 
0.20 
0.39 

0.48 
0.63 
1.01 

TABLE 3 

for w/s (Ratio of Range to Sample Standard Deviation)* 

Number of 5% 1% 0.5% 
Observations Significance Significance Significance 

n Level Level Level 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
30 
40 
50 
60 
80 

100 
150 
200 
500 

1000 

2.00 
2.43 
2.75 
3.01 
3.22 
3.40 
3.55 
3.68 
3.80 
3.91 
4.00 
4.09 
4.17 
4.24 
4.31 
4.38 
4.43 
4.49 
4.89 
5.15 
5.35 
5.50 
5.73 
5.90 
6.18 
6.38 
6.94 
7.33 

2.00 
2.44 
2.80 
3.10 
3.34 
3.54 
3.72 
3.88 
4.01 
4.13 
4.24 
4.34 
4.43 
4.51 
4.59 
4.66 
4.73 
4.79 
5.25 
5.54 
5.77 
5.93 
6.18 
6.36 
6.64 
6.85 
7.42 
7.80 

2.00 
2.45 
2.81 
3.12 
3.37 
3.58 
3.77 
3.94 
4.08 
4.21 
4.32 
4.43 
4.53 
4.62 
4.69 
4.77 
4.84 
4.91 
5.39 
5.69 
5.91 
6.09 
6.35 
6.54 
6.84 
7.03 
7.60 
7.99 

* Taken from H. A. David, H. O. Hartley and E. S. Pearson, "The Distribution of the 

Ratio in a Single Sample of Range to Standard Deviation," Biometrika, Vol. 41 (1954), 

pp. 482-493. (Reference [4]) 

\f (Xi - )2 

IW Xn 
- X Il 8 = n - 1 

X1 < X2 < " - < Xn 

FRANK E. GRUBBS 8 



DETECTING OUTLYING OBSERVATIONS IN SAMPLES 

The deviations -1.40 and 1.01 appear to be outliers. Here the suspected ob- 
servations lie at each end of the sample. Much less work has been accomplished 
for the case of outliers at both ends of the sample than for the case of one or 
more outliers at only one end of the sample. This is not necessarily because the 
"one-sided" case occurs more frequently in practice but because "two-sided" 
tests are more difficult to deal with. For a high and a low outlier in a single 
sample, the procedure below may possess near optimum properties. For optimum 
procedures when there is at hand an independent estimate, s2 of a2, see "Some 
Tests for Outliers" by C. P. Quesenberry and H. A. David, Technical Report 
No. 47, OOR (ARO) project No. 1166, Virginia Polytechnic Institute, Blacks- 
burg, Virginia. 

4.6 For the observations on the semi-diameters of Venus given above, all 
the information on the measurement error is contained in the sample of 15 
residuals. In cases like this, where no independent estimate of variance is avail- 
able (i.e. we still have the single sample case), a useful statistic is the ratio of the 
range of the observations to the sample standard deviation: 

w Xn - 1X I i s (Xi - X)2 W = x where s = 
s s \ -i - 

1 n 

If x, is about as far above the mean, x, as xi is below x, and if w/s exceeds some 
chosen critical value, then one would conclude that both the doubtful values are 
outliers. If, however, xl and x, are displaced from the mean by different amounts, 
some further test would have to be made to decide whether to reject as outlying 
only the lowest value or only the highest value or both the lowest and highest 
values. 

4.7 For this example the mean of the deviations is x = .018, s = .551, and 

/ 1.01 - (-1.40) 2.41 
tv/s = = -- = 4.374 .551 .551 

From Table 3 for n = 15, we see that the value of w/s = 4.374 falls between 
the critical values for the 1% and 5% levels, so if the test were being run at the 
5% level of significance, we would conclude that this sample contains one or 
more outliers. The lowest measurement, -1.40", is 1.418" below the sample 
mean, and the highest measurement, 1.01", is .992" above the mean. Since 
these extremes are not symmetric about the mean, either both extremes are 
outliers or else only -1.40 is an outlier. That -1.40 is an outlier can be verified 
by use of the T, statistic. We have 

T, = (x - x,)/s = .018 - -1.40) = 
2.574 and from .551 

Table 1 this value is greater than the critical value for the 5% level, so we 
reject -1.40. Since we have decided that -1.40 should be rejected, we use the 
remaining 14 observations and test the upper extreme 1.01, either with the 
criterion 

n 
- 

8 
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or with Dixon's r22 . Omitting -1.40" and renumbering the observations, we 
compute x = 1.67/14 = .119, s = .401, and 

1.01 - .119 
T4 .401 = 2.22 

.401 

From Table 1, for n = 14, we find that a value as large as 2.22 would occur by 
chance more than 5% of the time, so we should retain the value 1.01 in further 
calculations. We next calculate Dixon's sample criterion: 

x14 - x 2 1.01 - .48 .53 
Xr22 x- x3 1.01 + .24 1.25 

or 
r22 = .424 

From Table 2 for n = 14, we see that the 5% critical value for r22 is .546. Since 
our calculated value (.424) is less than the critical value, we also retain 1.01 
by Dixon's test, and no further values would be tested in this sample. (Note 3.) 

4.8 We next turn to the case where we may have the two largest or the two 
smallest observations as probable outliers. Here, we employ a test provided by 
Grubbs [8] which is based on the ratio of the sample sum of squares when the 
two doubtful values are omitted to the sample sum of squares when the two 
doubtful values are included. If simplicity in calculation is the prime require- 
ment, then the Dixon type of test (actually omitting one observation in the 

sample) might be used for this case. In illustrating the test procedure, we give 
the following Examples 4 and 5. 

Example 4 

In a comparison of strength of various plastic materials, one characteristic 
studied was the per cent elongation at break. Before comparison of the average 
elongation of the several materials, it was desirable to isolate for further study 
any pieces of a given material which gave very small elongation at breakage com- 

pared with the rest of the pieces in the sample. In this example, one might have 

primary interest only in outliers to the left of the mean for study, since very 
high readings indicate exceeding plasticity, a desirable characteristic. 

Following are ten measurements of per cent elongation at break made on 
material No. 23: 3.73, 3.59, 3.94, 4.13, 3.04, 2.22, 3.23, 4.05, 4.11, 2.02. Arranged 
in ascending order of magnitude, these measurements are: 2.02, 2.22, 3.04, 3.23, 
3.59, 3.73, 3.94, 4.05, 4.11, 4.13. The questionable readings are the two lowest, 
2.02 and 2.22. We can test these two low readings simultaneously by using the 
criterion S2.,/S2 of Table 4. For the above measurements: 

s2 = (x -)2 n E n x - (C x)2 _ 10(121.3594) - (34.06)2 
~__~ - Zi 

~ ~ 
n - 10 

S2 = 5.351 

Note 3: It should be noted that in a multiplicity of tests of this kind, the final overall 
significance level will be less than that used in the individual tests, as we are offering more than 
one chance of accepting the sample as one produced by a random operation. It is not our purpose 
here to cover the theory of multiple tests. 

10 FRANK E. GRUBBS 



DETECTING OUTLYING OBSERVATIONS IN SAMPLES 

and 
n n \2 

(n - 2) Ex- (1 
Cf2 _ V^ /? ? \2 _ i'i i=3 si 2 = C (Xi - z,.l)2 - 

i 
(x - 

(n - 2) 

(where l,2 = xi/(n - 2)) 

_8(112.3506) - (29.82)2 
8 

S2 9.5724 
S1.2 = = 1.197 8 

TABLE 4 

Critical Values for S_ ,.I/S2 or S, 2/S2 for Simultaneously Testing 
the Two Largest or Two Smallest Observations* 

Number of 10% 5% 1% 
Observations Significance Significance Significance 

n Level Level Level 

4 .0031 .0008 .0000 
5 .0376 .0183 .0035 
6 .0921 .0565 .0186 
7 .1479 .1020 .0440 
8 .1994 .1478 .0750 
9 .2454 .1909 .1082 

10 .2853 .2305 .1415 
11 .3226 .2666 .1736 
12 .3552 .2996 .2044 
13 .3843 .3295 .2333 
14 .4105 .3568 .2605 
15 .4345 .3818 .2859 
16 .4562 .4018 .3098 
17 .4761 .4259 .3321 
18 .4914 .4455 .3530 
19 .5113 .4636 .3725 
20 .5269 .4804 .3909 

1 
S2 = E (Xi - x)2 X = - 2 X XI < <X2 < ." 

<,Xn 
-1 n i-l 

n 1 n 

S.2 -= (x, - x12)2 X1,2 =- E 
i-3 n - 2 i3 

n-2 n-2 

=n - E (Xi - Xn-l,n) Xn-l ,n = - X 
i=t n-2 il 

* These significance levels are taken from Table V of Grubbs, Reference [8]. An observed 
ratio less than the appropriate critical ratio in this table calls for rejection of the null hypothesis. 
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We find 

S1.2 1.197 S2 
.31 -224 

S2 5.351 

From Table 4 for n = 10, the 5% significance level for S~,2/S2 is .2305. Since 
the calculated value is less than the critical value, we should conclude that both 
2.02 and 2.22 are outliers. In a situation such as the one described in this ex- 
ample, where the outliers are to be isolated for further analysis, a singificance 
level as high as perhaps even 10% would probably be used in order to get a 
reasonable size of sample for additional study. 

Example 5 

The following ranges (horizontal distances in yards from gun muzzle to point 
of impact of a projectile) were obtained in firings from a weapon at a constant 
angle of elevation and at the same weight of charge of propellant powder: 

Distances in Yards 
4782 4420 
4838 4803 
4765 4730 
4549 4833 

It is desired to make a judgment on whether the projectiles exhibit uniformity 
in ballistic behavior or if some of the ranges are inconsistent with the others. 
The doubtful values are the two smallest ranges, 4420 and 4549. For testing 
these two suspected outliers, the statistic ST,2/S2 of Table 4 is probably the 
best to use. (Note 4.) 

The distances arranged in increasing order of magnitude are: 

4420 4782 
4549 4803 
4730 4833 
4765 4838 

The value of S2 is 158,592. Omission of the two shortest ranges, 4420 and 4549, 
and recalculation gives S,2 equal to 8590.8. Thus, 

Si,2 8590.8 
2_ - 

= .054 
S2 158,592 .0 

which is significant at the .01 level (See Table 4). It is thus highly unlikely that 
the two shortest ranges (occurring actually from excessive yaw) could have come 
from the same population as that represented by the other six ranges. It should 
be noted that the critical values in Table 4 for the 1% level of significance are 
smaller than those for the 5% level. So for this particular test, the calculated 
value is significant if it is less than the chosen critical value. 

Note 4: Kudo [11] indicates that if the two outliers are due to a shift in location or level, as 

compared to the scale a, then the optimum sample criterion for testing should be of the type: 
min. (2x - xi - xi)/s = (2x - xi - x2)/s in our Example 5. 
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4.9 If simplicity in calculation is very important, or if a large number of 
samples must be examined individually for outliers, the questionable observa- 
tions may be tested with the application of Dixon's criteria. Disregarding the 
lowest range, 4420 we test if the next lowest range 4549 is outlying. With n = 7, 
we see from Table 2 that r,o is the appropriate statistic. Renumbering the ranges 
as x, to X7, beginning with 4549, we find 

x2 - x, 4730 - 4549 181 
rio =. - =.626 

7, - x, 4838 - 4549 289 

which is only a little less than the 1% critical value, .637, for n = 7. So, if the 
test is being conducted at any significance level greater than the 1% level, we 
would conclude that 4549 is an outlier. Since the lowest of the original set of 
ranges, 4420, is even more outlying than the one we have just tested, it can be 
classified as an outlier without further testing. We note here, however, that this 
test did not use all of the sample observations. 

4.10 Rejection of Several Outliers. So far we have discussed procedures for 
detecting one or two outliers in the same sample, but these techniques are not 
generally recommended for repeated rejection, since if several outliers are 
present in the sample the detection of one or two spurious values may be 
"masked" by the presence of other anomalous observations. Outlying observa- 
tions occur due to a shift in level (or mean), or a change in scale (i.e., change in 
variance of the observations), or both. Ferguson [6, 7] has studied the power 
of the various rejection rules relative to changes in level or scale. For several 
outliers and repeated rejection of observations, Ferguson points out that the 
sample coefficient of skewness 

Vb = V/n I (x, - 
t)3/(n - 1)3s: = V/n ( (- )3/[E (x- )2] i-i i,- 

should be used for "one-sided" tests (change in level of several observations in 
the same direction), and the sample coefficient of kurtosis 

n it 

hb = n 1)s n (x, - x)/(n (x - xx)]2 
i-l i=l 

is recommended for "two-sided" tests (change in level to higher and lower values) 
and also for changes in scale (variance)*. In applying the above tests, the vb, 
or the b2 , or both, are computed and if their observed values exceed those for 
significance levels given in the following tables, then the observation farthest 
from the mean is rejected and the same procedure repeated until no further 
sample values are judged as outliers. [As is well-known ~ib, and b, are also 
used as tests of Normality]. 

4.10.1 The significance levels in the following tables for sample sizes of 
5, 10, 15 and 20 (and 25 for b2) were obtained by Ferguson on an IBM 704 
Computer using a sampling experiment or "Monte Carlo" procedure. The 

*In the above equations for -/b' and b2, s is defined as used in this paper, i.e. 

s =- (x,i- 'X/(n 
- 1) 

i,,1 
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significance levels for the other sample sizes are from E. S. Pearson, "Table of 
Percentage Points of /~b and b2 in Normal Samples; a Rounding Off," Bio- 
metrika (1965), Vol. 52, pp. 282-285. 

Significance Levels for b 

n 
Sig 

Level 5* 10* 15* 20* 25 30 35 40 50 60 

1% 1.34 1.31 1.20 1.11 1.06 .98 .92 .87 .79 .72 
5% 1.05 .92 .84 .79 .71 .66 .62 .59 .53 .49 

Significance Levels for bl 

n 
Sig 

Level 5* 10* 15* 20* 25* 50 75 100 

1% 3.11 4.83 5.08 5.23 5.00 4.88 4.59 4.39 

5% 2.89 3.85 4.07 4.15 4.00 3.99 3.87 3.77 

* These values were obtained by Ferguson, using a Monte Carlo procedure. For n = 25, 

Ferguson's Monte Carlo values of b2 agree with Pearson's computed values. 

4.10.2 The V/b and b2 statistics have the optimum property of being 
"locally" best against one-sided and two-sided alternatives, respectively. The 

/b, test is good for up to 50% spurious observations in the sample for the 
one-sided case and the b2 test is optimum in the two-sided alternatives case for 

up to 21% "contamination" of sample values. For only one or two outliers the 

sample statistics of the previous paragraphs are recommended, and Ferguson [7] 
discusses in detail their optimum properties of pointing out one or two outliers. 

5. RECOMMENDED CRITERION USING INDEPENDENT 
STANDARD DEVIATION 

5.1 Suppose that an independent estimate of the standard deviation is avail- 
able from previous data. This estimate may be from a single sample of previous 
similar data or may be the result of combining estimates from several such 

previous sets of data. In any event, each estimate is said to have degrees of 
freedom equal to one less than the sample size that it is based on. The proper 
combined estimate is a weighted average of the several values of s2, the weights 
being proportional to the respective degrees of freedom. The total degrees of 
freedom in the combined estimate is then the sum of the individual degrees of 
freedom. When one uses an independent estimate of the standard deviation, s, 
the test criterion recommended here for an outlier is as follows: 

T, = x- x (v = total number of degrees of freedom) 

or 

T 
- 

X 
Sn 8, 
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5.2 The critical values for T[ and T' for the 5% and 1% significance levels 
are due to David [3] and are given in Table 5. In Table 5 the subscript v = df 
indicates the total number of degrees of freedom associated with the independent 
estimate of standard deviation a and n indicates the number of observations 

TABLE 5 
Critical Values for T When Standard Deviation s, is Independent of Present Sample 

xn - X X - xl 
T = or 

S, Si 

3 4 5 6 7 8 9 10 12 

1% points 

2.78 
2.72 
2.67 
2.63 
2.60 
2.57 
2.54 
2.52 
2.50 
2.49 
2.47 
2.42 
2.38 
2.34 
2.29 
2.25 
2.22 

3.10 
3.02 
2.96 
2.92 
2.88 
2.84 
2.81 
2.79 
2.77 
2.75 
2.73 
2.68 
2.62 
2.57 
2.52 
2.48 
2.43 

3.32 
3.24 
3.17 
3.12 
3.07 
3.03 
3.00 
2.97 
2.95 
2.93 
2.91 
2.84 
2.79 
2.73 
2.68 
2.62 
2.57 

3.48 3.62 3.73 3.82 
3.39 3.52 3.63 3.72 
3.32 3.45 3.55 3.64 
3.27 3.38 3.48 3.57 
3.22 3.33 3.43 3.51 
3.17 3.29 3.38 3.46 
3.14 3.25 3.34 3.42 
3.11 3.22 3.31 3.38 
3.08 3.19 3.28 3.35 
3.06 3.16 3.25 3.33 
3.04 3.14 3.23 3.30 
2.97 3.07 3.16 3.23 
2.91 3.01 3.08 3.15 
2.85 2.94 3.02 3.08 
2.79 2.88 2.95 3.01 
2.73 2.82 2.89 2.95 
2.68 2.76 2.83 2.88 

3.90 
3.79 
3.71 
3.64 
3.58 
3.53 
3.49 
3.45 
3.42 
3.39 
3.37 
3.29 
3.21 
3.13 
3.06 
3.00 
2.93 

4.04 
3.93 
3.84 
3.76 
3.70 
3.65 
3.60 
3.56 
3.53 
3.50 
3.47 
3.38 
3.30 
3.22 
3.15 
3.08 
3.01 

5% points 

2.01 
1.98 
1.96 
1.94 
1.93 
1.91 
1.90 
1.89 
1.88 
1.87 
1.87 
1.84 
1.82 
1.80 
1.78 
1.76 
1.74 

2.27 
2.24 
2.21 
2.19 
2.17 
2.15 
2.14 
2.13 
2.11 
2.11 
2.10 
2.07 
2.04 
2.02 
1.99 
1.96 
1.94 

2.46 
2.42 
2.39 
2.36 
2.34 
2.32 
2.31 
2.29 
2.28 
2.27 
2.26 
2.23 
2.20 
2.17 
2.14 
2.11 
2.08 

2.60 2.72 
2.56 2.67 
2.52 2.63 
2.50 2.60 
2.47 2.57 
2.45 2.55 
2.43 2.53 
2.42 2.52 
2.40 2.50 
2.39 2.49 
2.38 2.47 
2.34 2.44 
2.31 2.40 
2.28 2.37 
2.25 2.33 
2.22 2.30 
2.18 2.27 

2.81 2.89 
2.76 2.84 
2.72 2.80 
2.69 2.76 
2.66 2.74 
2.64 2.71 
2.62 2.69 
2.60 2.67 
2.58 2.65 
2.57 2.64 
2.56 2.63 
2.52 2.58 
2.48 2.54 
2.44 2.50 
2.41 2.47 
2.37 2.43 
2.33 2.39 

2.96 
2.91 
2.87 
2.83 
2.80 
2.77 
2.75 
2.73 
2.71 
2.70 
2.68 
2.64 
2.60 
2.56 
2.52 
2.48 
2.44 

3.08 
3.03 
2.98 
2.94 
2.91 
2.88 
2.86 
2.84 
2.82 
2.80 
2.78 
2.74 
2.69 
2.65 
2.61 
2.57 
2.52 

The above percentage points are reproduced from H. A. David, "Revised upper percentage 
points of the extreme studentized deviate from the sample mean," Biometrika, Vol. 43 (1956), 
pp. 449-451. (Reference [3]). 

n 

v = df 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
24 
30 
40 
60 

120 
co 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
24 
30 
40 
60 

120 
co 
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Standardization of Sodium Hydroxide Solutions as Determined by Plant Laboratories 
Standard Used: Potassium Acid Phthalate (P.A.P) 

Deviation of Average from 
Laboratory (P.A.P.-.096000) X 103 Sums Averages Grand Average 

1 1.893 
1.972 
1.876 5.741 1.914 + .043 

2 2.046 
1.851 
1.949 5.846 1.949 + .078 

3 1.874 
1.792 
1.829 5.495 1.832 - .039 

4 1.861 
1.998 
1.983 5.842 1.947 + .076 

5 1.922 
1.881 
1.850 5.653 1.884 + .013 

6 2.082 
1.958 
2.029 6.069 2.023 + .152 

7 1.992 
1.980 
2.066 6.038 2.013 + .142 

8 2.050 
2.181 
1.903 6.134 2.045 + .174 

9 1.831 
1.883 
1.855 5.569 1.856 - .015 

10 .735 
.722 
.777 2.234 .745 -1.126 

11 2.064 
1.794 
1.891 5.749 1.916 + .045 

12 2.475 
2.403 
2.102 6.980 2.327 + .456 

Grand Sum 
Grand Average 

67.350 
1.871 
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in the sample under study. We illustrate with an example on interlaboratory 
testing. 

5.3 Example 6-Interlaboratory Testing. In an analysis of interlaboratory 
test procedures, data representing normalities of sodium hydroxide solutions 
were determined by twelve different laboratories. In all the standardizations, a 
tenth normal sodium hydroxide solution was prepared by the Standard Methods 
Committee using carbon-dioxide-free distilled water, Potassium acid phthalate 
(P. A. P.), obtained from the National Bureau of Standards, was used as the 
test standard. 

Test data by the twelve laboratories are given in the table below. The P. A. P. 
readings have been coded to simplify the calculations. The variances between 
the three readings within all laboratories were found to be homogeneous. A 
one-way classification in the analysis of variance was first analyzed to determine 
if the variation in laboratory results (averages) was statistically significant. 
This variation was significant, so tests for outliers were then applied to isolate 
the particular laboratories whose results gave rise to the significant variation. 
We are indebted to Dr. Grant Wernimont of the Eastman Kodak Co. for the 
data on Standardization of Sodium Hydroxide Solutions. 

Analysis of Variance 

Source of Degrees of Sum of Squares Mean Square 
Variation Freedom d.f. SS MS F-ratio 

Between Labs 11 4.70180 .4274 F = 48.61 
(Highly 

Within Labs 24 .21103 .008793 Significant) 

TOTAL 35 4.91283 

The above analysis of variance shows that the variation between laboratories 
is highly significant. To test if this (very significant) variation is due to one 
(or perhaps two) laboratories that obtained "outlying" results (i.e. perhaps 
showing non-standard technique), we can test the laboratory averages for 
outliers. From the analysis of variance, we have an estimate of the variance of 
an individual reading as .008793, based on 24 degrees of freedom. The estimated 
standard deviation of an individual measurement is \/.008793 = .094 and the 
estimated standard deviation of the average of three readings is therefore 
.094//3 = .054. 

Since the estimate of within-laboratory variation is independent of any 
difference between laboratories, we can use the statistic T[ of section 5.1 to 
test for outliers. An examination of the deviations of the laboratory averages 
from the grand average indicates that Laboratory 10 obtained an average 
reading much lower than the grand average, and that Laboratory 12 obtained a 
high average compared to the overall average. To first test if Laboratory 10 is 
an outlier, we compute 

1.871 - .745 T' =20.9 .054 
This value of T' is obviously significant at a very low level of probability 
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(P << .01. Refer to Table 5 with n = 12 and v = 24 d.f.). We conclude therefore 
that the test methods of Laboratory 10 should be investigated. 

Excluding Laboratory 10, we compute a new grand average of 1.973 and test 
if the results of Laboratory 12 are outlying. We have 

2.327 - 1.973 = 6.56 
.054 

and this value of T' is significant at P << .01 (Refer to Table 5 with n = 11 and 
v = 24 d.f.). We conclude that the procedures of Laboratory 12 should also 
be investigated. 

To verify that the remaining laboratories did indeed obtain homogeneous 
results, we might repeat the analysis of variance omitting Laboratories 10 
and 12. This calculation gives 

Analysis of Variance 
(omitting labs 10 and 12) 

Source of Variation d.f. SS MS F-ratio 

Between Labs 9 .13889 .01543 F = 2.36 
Within Labs 20 .13107 .00655 F.05(9, 20) = 2.40 

F.01(9, 20) = 3.45 

TOTAL 29 .26996 

For this analysis, the variation between labs is not significant at the 5% 
level and we conclude that all the laboratories except No. 10 and No. 12 exhibit 
the same capability in testing procedure. 

In conclusion, there should be a systematic investigation of test methods for 
Laboratories No. 10 and No. 12 to determine why their test precedures are 

apparently different from the other ten laboratories. 
(For the above example, procedures for ranking means after the initial 

analysis of variance test could, of course, have been used. For example, Duncan's 

Multiple Range Test, Scheffe's Test, Tukey's procedure, etc., could have been 
used. Also, the test of Halperin, Greenhouse and Cornfield [9] could have been 
used. We have used David's tables [3] as an example here since they seem 
tailor-made for one or two specific laboratories.) 

6. RECOMMENDED CRITERIA FOR KNOWN 
STANDARD DEVIATION 

6.1 Frequently the population standard deviation a may be known accurately. 
In such cases, Table 6 may be used for single outliers and we illustrate with the 

following example. 
6.2 Example 7 (a known). Passage of the Echo I (Balloon) Satellite was 

recorded on star-plates when it was visible. Photographs were made by means 
of a camera with shutter automatically timed to obtain a series of points for 
the Echo path. Since the stars were also photographed at the same times as the 

Satellite, all the pictures show star-trails and so are called "star-plates." 
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TABLE 6 

Critical Values of TI. and T0t When the Population Standard Deviation a is Known 

Number of 5% 1% 0.5% 
Observations Significance Significance Significance 

n Level Level Level 

2 1.39 1.82 1.99 
3 1.74 2.22 2.40 
4 1.94 2.43 2.62 
5 2.08 2.57 2.76 
6 2.18 2.68 2.87 
7 2.27 2.76 2.95 
8 2.33 2.83 3.02 
9 2.39 2.88 3.07 

10 2.44 2.93 3.12 
11 2.48 2.97 3.16 
12 2.52 3.01 3.20 
13 2.56 3.04 3.23 
14 2.59 3.07 3.26 
15 2.62 3.10 3.29 
16 2.64 3.12 3.31 
17 2.67 3.15 3.33 
18 2.69 3.17 3.36 
19 2.71 3.19 3.38 
20 2.73 3.21 3.39 
21 2.75 3.22 3.41 
22 2.77 3.24 3.42 
23 2.78 3.26 3.44 
24 2.80 3.27 3.45 
25 2.81 3.28 3.46 

Xi < X2 < X3 < '* < Xn T = (X -X,)/ T/ = (xn - I)/a 

This table is taken from the paper of Grubbs, Reference [8]. 

The x- and y-coordinate of each point on the Echo path are read from a 
photograph, using a stereo-comparator. To eliminate bias of the reader, the 
photograph is placed in one position and the coordinates are read; then the 
photograph is rotated 180? and the coordinates reread. The average of the two 
readings is taken as the final reading. Before any further calculations are made, 
the readings must be "screened" for gross reading or tabulation errors. This is 
done by examining the difference in the readings taken at the two positions of 
the photograph. 

Recorded below are a sample of six readings made at the two positions and 
the differences in these readings. On the third reading, the differences are rather 
large. Has the operator made an error in positioning the cross-hair on the point? 

For this example, an independent estimate of ao is available since extensive 
tests on the stero-comparator have shown that the standard deviation in 
reader's error is about 4 microns. The determination of this standard error was 
based on such a large sample that we can assume a = 4 microns. The standard 
deviation of the difference in two readings is therefore /42 + 42 = 32 
or 5.7 microns. 
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Measurement (Microns) 
x-Coordinate y-Coordinate 

Pos. 1 Pos. 1 + 180? Ax Pos 1 Pos. 1 + 180? Ay 

-53011 -53004 - 7 70263 70258 + 5 
-38112 -38103 - 9 -39729 -39723 - 6 
- 2804 - 2828 +24 81162 81140 +22 

18473 18467 + 6 41477 41485 - 8 
25507 25497 +10 1082 1076 + 6 
87736 87739 - 3 - 7442 - 7434 - 8 

For the six readings above, the mean difference in the x-coordinates is Ai = 3.5 
and the mean difference in the y-coordinates is A, = 1.8. For the questionable 
third reading, we have 

24 - 3.5 
T - 57 3.60 

5.7 

22 - 1.8 
Tf= 57 = 3.54 

5.7 

From Table 6 we see that for n = 6, values of T', as large as the calculated 
values would occur by chance less than 1% of the time so that a significant 
reading error seems to have been made on the third point. 

6.3 A great number of points are read and automatically tabulated on star- 

plates. Here we have chosen a very small sample of these points. In actual 

practice, the tabulations would probably be scanned quickly for very large 
errors such as tabulator errors; then some rule-of-thumb such as -3 standard 
deviations of reader's error might be used to scan for outliers due to operator 
error. (Note 5). In other words, the data are probably too extensive to allow 

repeated use of precise tests like those described above, (especially for varying 

sample size) but this example does illustrate the case where a is assumed known. 

If gross disagreement is found in the two readings of a coordinate, then the 

reading could be omitted or reread before further computations are made. 

7. ADDITIONAL COMMENTS 

7.1 In the above, we have covered only that part of screening samples to 

detect outliers statistically. However, a large area remains after the decision 

has been reached that outliers are present in data. Once some of the sample 
observations are branded as "outliers", then a thorough investigation should 
be initiated to determine the cause. In particular, one should look for gross 

errors, personal errors, errors of measurement, errors in calibration, etc. If 

reasons are found for aberrant observations, then one should act accordingly 
and perhaps scrutinize also the other observations. Finally, if one reaches the 

point that some observations are to be discarded or treated in a special manner 

Note 5: Note that the values of Table 6 vary between about 1.4a and 3.5a. 
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based solely on statistical judgment, then it must be decided what action should 
be taken in the further analysis of the data. We do not propose to cover this 
problem here, since in many cases it will depend greatly on the particular case 
in hand. However, we do remark that there could be the outright rejection of 
aberrant observations once and for all on physical grounds (and preferably 
not on statistical grounds generally), and only the remaining observations 
would be used in further analyses or in estimation problems. On the other hand, 
some may want to replace aberrant values with newly taken observations and 
others may want to "Winsorize" the outliers i.e., replace them with the next 
closest values in the sample. Also with outliers in a sample, some may wish to 
use the median instead of the mean, and so on. Finally, we remark that perhaps 
a fair or appropriate practice might be that of using truncated sample theory 
(Note 6) for cases of samples where we have "censored" or rejected some of the 
observations. We cannot go further into these problems here. For additional 
reading on outliers, however, see References [1], [2], [3], [10], [12], [13], and [14]. 
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