Transportation Systems as Networks

Using graph analyses we are interested in measuring such things as:

1. Traffic generated by nodes.
2. Flow along links.
3. Degree of accessibility and connectivity.
4. Spatial extent of a network.
5. Network association along a route.
6. Influence of one place on other places on a route or in a network.

Graph theory - reduces transport networks to a mathematical matrix whereby:

Edge: Line segment (link) between locations.

- Example: roads, rail lines, etc...

Vertex: Location on the transportation network that is of interest (node).

- Example: towns, road intersections, etc...

In transportation analysis graphs are ALWAYS finite... there are always constraining boundaries.

Node - a location on a transportation route that has the capacity to generate traffic (flow).

Link - the connection between 2 nodes along which flow occurs.

Route - a series of connected links.
Network - a system of nodes and links. May consist of several modal types (road, rail, etc...), but is typically of a single mode type.

Road System: Meseta Tarasca, Michoacán, Mexico

A few words about vertices (nodes):

1. Vertices must occur where 3+ edges meet.
2. The endpoints of edges are vertices.
3. Vertices can occur mid-link.

Directed graph - direction of flow is explicit.
Undirected graph - no flow direction implied.
Loop - flow from a node into itself.
Planar - graphs where all links (edges) meet at nodes (vertices).

Non-planar - graphs where links (edges) may cross each other.

Element - a graph cell (dyad).

Real World Road System

Planar Network

Topologic (geometric) distance - a unit-less measure where the distance between nodes is coded as a single step.

- Distance is ONLY implied (e.g. more steps = longer distance.
- Real world distances are not used.
- Essentially removes the influence of distance.

Topologic (geometric) distance

Example Graph

Vertices = $\mathbf{8}$

Edges = 10

Diameter - the number of links needed to connect the two most remote nodes in a network.

- The route used must be the shortest possible.
- Backtracks, loops, and detours are excluded.
- Sometimes referred to as the 'longest, shortest path'.

In other words, the diameter is the maximum number of steps to connect any two points on a graph.

Most Distant Nodes: 8 and 2

Longest Shortest Route $8 \rightarrow 7 \rightarrow 3 \rightarrow 2$
Diameter = 3

Tree - a connected acyclic simple graph, which therefore has no complete circuits.

Simple graph

Tree

Cyclomatic Number - An index that is the difference between the number of edges and vertices.

$$
\mu=e-v+p
$$

where μ is the cyclomatic number, e is the number of edges, v is the number of vertices, and p is the number of subgraphs.

Note: in most cases $p=1$.

Vertices

Edges

$\mu=e-v+p$
$\mu=10-8+1=3$

$e=6$
$v=7$
$p=1$
$6-7+1=0$

$e=7$
$v=7$
$p=1$
$7-7+1=1$

$$
\begin{aligned}
& e=8 \\
& v=7 \\
& n=1
\end{aligned}
$$

$8-7+1=2$

$$
\begin{gathered}
e=12 \\
v=7 \\
p=1
\end{gathered}
$$

$12-7+1=6$

Therefore, the cyclomatic number is essentially the number of closed circuits in the graph. It is a measure of route redundancy.

$e=6$
$v=7$
$p=1$
$6-7+1=0$

$e=7$
$v=7$
$p=1$
$7-7+1=1$

$$
\begin{aligned}
& e=8 \\
& v=7 \\
& n=1
\end{aligned}
$$

$8-7+1=2$

$$
\begin{gathered}
e=12 \\
v=7 \\
p=1
\end{gathered}
$$

$12-7+1=6$

Minimum number of edges in a graph:

$$
\operatorname{Min} \mu=v-1
$$

$\operatorname{Min} \mu=8-1=7$

Maximum number of circuits in a graph:
Max circuits $=1 / 2 v(v-1)-(v-1)$

Note: not all vertices are shown.

Max circuits =1/28(8-1)-(8-1)
Max circuits $=(4)(7)-7=21$

Notice that there are several possible graphs that can be drawn base on Min μ, but there is only one possible $\operatorname{Max} \mu$.

Min edges

Max circuits

Gamma - a measure of graph connectivity and is a simple measure to use. It can be thought of as the percent existing routes to potential routes.

$$
\begin{gathered}
y=e /(1 / 2 v(v-1)) \\
\quad \text { or } \\
y=e /(0.5 v)(v-1)
\end{gathered}
$$

Remember that max μ calculates EDGES and that gamma is working with ROUTES.

Beta - a measure of graph connectivity that can be interpreted as the average number of edges per vertex (average number of links per node).

$$
\beta=e / v
$$

$v=8$
$e=10$

$$
\begin{aligned}
& \beta=10 / 8 \\
& \beta=1.25
\end{aligned}
$$

Alpha - a measure of graph connectivity that can be interpreted as the ratio of existing circuits to the maximum possible circuits.

$$
\alpha=e-(v-1) /(0.5 v(v-1))-(v-1)
$$

Pi Index - a the relationship between the total length of the graph $L(G)$ and the distance along its diameter $D(d)$. A high index shows a developed network. It is a measure of distance per units of diameter and an indicator of the shape of the network.

$$
\pi=\frac{L(G)}{D(d)}
$$

```
\(\mathrm{L}(\mathrm{G})=82\)
\(D(d)=29\)
```


$$
\begin{aligned}
& \pi=\frac{11+10+10+8+8+8+7+6+8+6}{8+7+6+8} \\
& \pi=\frac{82}{29} \\
& \pi=2.83
\end{aligned}
$$

Eta - the average length per link. Adding new nodes will cause a decrease in eta as the average length per link declines.

$$
\eta=\frac{L(G)}{e}
$$

Detour Index - a measure of the efficiency of a network in terms of how well it overcomes distance or the friction of distance. The closer the detour index gets to 1 , the more the network is spatially efficient. Networks having a detour index of 1 are rarely, if ever, seen and most networks would fit on an asymptotic curve getting close to 1 , but never reaching it.

$$
\mathrm{DI}=\frac{\mathrm{DD}}{\mathrm{TD}}
$$

The straight distance (DD) between two nodes may be 40 km but the transport distance (TD; real distance) is 50 km . The detour index is thus 0.8 ($40 / 50$).

Transport Distance (TD)

Straight Distance (DD)

$$
\mathrm{DI}=\frac{(10+11+10+8+9)}{(12+13+11+8+9)}=\frac{48}{53}=0.91
$$

Network Density - measures the territorial occupation of a transport network in terms of km of links (L) per square kilometers of surface (S). The higher it is, the more a network is developed.

$$
N D=\frac{L}{S}
$$

$\mathrm{ND}=\frac{(12+13+11+8+9)}{(25 \times 27)}$
$\mathrm{ND}=\frac{53}{100}$
$\mathrm{ND}=0.076 \mathrm{~km} / \mathrm{km}^{2}$

25 km

