Valued Graph Analysis

So far we have been using topologic distances to determine isolation / connectivity. However both connectivity and Shimbel distance have shortcomings:

Connectivity:

- All steps are of equal topologic length (1).
- Indirect and direct linkages are treated equally.

Shimbel Distance:

- All steps are of equal topologic length (1).
- We assume that fewer steps equals lower isolation.

The Five Measurement Problems in Matrix Analysis

- 1. <u>Placement</u>: consideration is given to *where* linkages are located in a network.
- 2. <u>Direct/Indirect Linkages</u>: both should be considered.
- 3. <u>Attenuation</u>: differences between direct and indirect linkages should be treated.
- <u>Redundancy</u>: corrections should be made for meaningless round trips.
- 5. <u>Unequal Linkages</u>: linkages should be weighted based on some measure.

Valued graphs: the shortest actual (rather than topological) distance needed to connect one node to all other nodes.

• Also referred to as *L-matrix*.

• Addresses all five of the network measurement problems, including unequal linkages.

• This is done by using real-world distances and shortest routes.

	1	2	3	4	5	6
1	0	10	8	8	8	8
2	10	0	20	8	8	8
3	8	20	0	10	30	8
4	8	8	10	0	8	8
5	8	8	30	8	0	5
6	8	8	8	8	5	0

With a few simple modifications we can use the same procedure as in the connectivity matrix to give us valued results.

- Code direct connections with the actual route distance.
- Code cells with no direct connections as ∞
 ... leave them blank.
- Use matrix addition rather than multiplication.

$$(n_1 \rightarrow n_1) + (n_1 \rightarrow n_3) = 0 + \infty = \infty$$
$$(n_1 \rightarrow n_2) + (n_2 \rightarrow n_3) = 10 + 20 = 30$$
$$(n_1 \rightarrow n_3) + (n_3 \rightarrow n_3) = \infty + 0 = \infty$$
$$(n_1 \rightarrow n_4) + (n_4 \rightarrow n_3) = \infty + 10 = \infty$$
$$(n_1 \rightarrow n_5) + (n_5 \rightarrow n_3) = \infty + 30 = \infty$$
$$(n_1 \rightarrow n_6) + (n_6 \rightarrow n_3) = \infty + \infty = \infty$$

The ∞ results above mean that there is no connection, or that it would take an infinite amount of time.

L1

	1	2	3	4	5	6
1	0	10	8	8	8	8
2	10	0	20	8	8	8
3	8	20	0	10	30	8
4	8	8	10	0	8	8
5	8	8	30	8	0	5
6	8	8	8	8	5	0

L2

	1	2	3	4	5	6
1	0	10	30	40	60	8
2	10	0	20	30	50	55
3	30	20	0	10	30	35
4	40	30	10	0	40	45
5	60	50	30	40	0	5
6	8	55	35	45	5	0

L-Total

	1	2	3	4	5	6	
1	0	10	30	40	60	65	= 205
2	10	0	20	30	50	55	= 165
3	30	20	0	10	30	35	= 125
4	40	30	10	0	40	45	= 165
5	60	50	30	40	0	5	= 185
6	65	55	35	45	5	0	= 205

Power the matrix to its diameter and sum the rows.

L-Total

	-	•	•		-	~	
	1	2	3	4	2	0	
1	0	10	30	40	60	65	= 205
2	10	0	20	30	50	55	= 165
3	30	20	0	10	30	35	= 125
4	40	30	10	0	40	45	= 165
5	60	50	30	40	0	5	= 185
6	65	55	35	45	5	0	= 205

Route Impact Analysis Using Valued Graphs

• Determine the valued results for each node before adding a new road.

• Add a new road to a network.

• Determine the valued results for each node after adding a new road.

- Compare the results.
- Make modifications.

Rank Change After Adding New Road

Town	Before	Rank	After	Rank	Change
Sevina	1883.4	1	1802.1	1	0
Nahuatzen	1898.2	2	1816.9	2	0
Pichataro	2103.4	5	1917.7	3	2
Cheran	2017.8	4	1936.4	4	0
San Isidro	1986.1	3	1986.1	5	-2
Aranza	2158.4	6	2077.0	6	0
Erongaricuaro	2326.4	15	2101.4	7	8
Arantepacua	2203.9	7	2122.5	8	-1
Paracho	2208.2	8	2126.8	9	-1
Comachuen	2209.0	9	2127.6	10	-1
Uricho	2388.0	18	2167.9	11	7

Note: not all nodes shown.

Proposed Road Elevation Profile

An elevation change of 4265 feet over 6.15 miles equates to grade of 693 ft/mi.

That is a very steep grade.

One measurement that is *not* accounted for in these analyses is topography (elevation change with distance or grade).

It is unlikely that a road with this grade would be used very often.

Questions:

Are the impacts to the towns on the north shore of the lake realistic?

Will these towns really become more accessible with the addition of this road?