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TESTING FOR NORMALITY 

BY R. C. GEARY, Cambridge University Department of Applied Economics 

The present communication, one of a series, has two main objectives: 
(1) To show that probabilities derived from the well-known analyses of variance and 

other 'small sample' tables, which postulate universal normality, may differ seriously from 
the true probabilities when the universes are non-normal, even, in some cases, when the 
degree of non-normality is not considerable. 

(2) To determine the most efficient-tests of normality from a wide field of alternative 
symmetrical tests. 

It may be uscful to summarize very briefly previous work in so far as it is strictly relevant 
to this study.* The modern theory may be regarded as having been initiated by Karl Pearson 
who, in 1895, found the first approximation (i.e. to n-*) to the variances and-covariance of 
,/bl and b, for samples drawn at random from any universe and, assuming that the Jb, and 
b, were distributed jointly with normal probability, constructed 'probability ellipses' from 
which the probability of the same values occurring; had the universe, in'fact, been normal, 
could be inferred very approximately. A considerable advance in moment determination 
was made by C. C. Craig (1928). In  1929, R. A. Fisher, in inventing cumulants, simple func- 
tions of the sample moments, and formulating rules for hd ing  their semi-invariants, 
developed incidentally a technique for expanding to several terms in 11% the moments of 
Jbl and b, when the universe was normal. This p'aper was followed soon after by another 
(1930), fundamental for all succeeding work on this subject, in which R. A. Fisher ingeniously 
applied combinatorial technique to the hd ing  of exact values of the moments of normal 
Jb, and b,, and gave inter a2ia the values of the second, fourth and sixth moments of ,/b, 
and of the first three moments of b,. The fourth semi-invariant, together with many other 
normal semi-invariants of b,, was determined by J.Wishart in 1930, and a further advance 
in R. A. Fisher's technique was made jointly by R. A. Fisher .& J. Wishart in 1930. In 
1932 Joseph Pepper gave the eighth normal moment of Jb,. Using R. A. Fisher's rules 
C. T. Hsu and D. N. Lawley in 1940 gave the exact values for normal random samples of 
the fifth and sixth moments of b,. Using a method due to R. C. Geary (1933) (applying 
C. C. Craig's ideas (1928) to the normal problem), R. C. Geary & J. P. G. Worlledge have 
recently (1946) found the seventh moment of b,. 

So much for moment determination. In 1930, E. S. Parson used appropriate Pearson-type 
curves, applied to R. A. Fisher's (1929) approximations of the semi-invariants, to find 
approximate frequency distributions of Jb, and b,. From the frequency'distributions he 
computed a table of 1 % and 5 % probability points a t  intervals for n from 50 to 5000 for Jb, 
and for n from 100 to 5000 for b,. 

Since a t  the time the prospect seemed remote of determining the frequency- of normal b,  
on which reliance could be reposed for samples of moderate sizes, R. C. Geary (1935)T 
suggested that the ratio, a, of mean deviation to standard deviation computed from the origin 

* An excellent account of the development of moment theory up to the year 1930 wss given by 
J. Wishart (1930). 

t The author &as informed by M. Fr6chet that this test was suggested by Bertrand, but has been 
unable to check the reference. 
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might be used as a test of normality, and gave the 1 and 6 % probability points for this test 
a t  intervals for normal samples of 6-100. E. S. Pearson compared experimentally Geary's 
test with b, and suggested, for samples so large that comparison could safely be made, that 
6, was probably somewhat more sensitive than a, a suggestion which will be examined 
theoretically in this communication. In  1936 also, R. C. Geary showed that there was a 
high (negative) correlation for normal samples between a(1) (see 3.1) and b, for normal 
samples, and argued therefrom that the former should be nearly as efficient as b,. In  1936, 
R. C. Gesry gave a table of 1, 6 and 10 % probability points of a(l), a t  intervals for samples 
of 11-1001. In 1938, a brochure by R. C. Geary & E. S. Pearson was published by the 
Biometrika Office entitled Tests of Nermality, giving tables and diagrams of probability 
points of a(1) 4bJb,and b,. There is considerable literature dealing with the effect of universal 
non-normality on the normal'tests, mostly by way of particular numerical examples: a selec- 
tion of papers on this subject is included in the list of referencesat the end of the paper. 

2. EPPECTos NON-NORMALITY 
(a) The z-test 

The effect of universal non-normality will first be considered in relation to the z-test. 
Ifxl, x2, . . .,xn. and y,, y,, . . . ,yn,, are two independent samples drawn a t  random from the 
same universe (normal or non-normal) it is easy to show that, if 

then 

when both n' and n" are so large that terms in n' and n" of degree less than -1 are regarded 
as negligible. This is an obvious generalization of the approximate formula given by 
R. A. Fisher* for normal samples, namely, 

fl$ = !(A+1) = q.
2 TI,' TI," 

It may be useful also to give formulae for the first and second moments from zero for z 
when the two random samples are drawn not necessarily from the same universes, though 
both universes have mean zero and the same variance A,: 

2 ~ ; = - I e + l h t )2Ai n'- n" 2Af1)+1[(%-$)+12A2(3-$)nlaTI,' 1 +-2 4  -+- no- 3A92 nt2 
3 (hi+2A;)2 (hl;+2A;)2

4 - ) - 1 - - n"2 I+ ..., 

(2.4) 

33 6
+ ~ [ ~ ( & + 2 ~ ~ ) ~ + ~ ( ~ ; + 2 ~ ~ ) ~ - - ( ~ ~ + 2 A ~ ) ( h l ; + 2 ~ ~ )12Ai n'2 n'n" 1+... J 

* ~S'tutistical Met?bods,for Research Workers, 8th ed. p. 219. 

2 



where the A's indicate semi-invarianfs of the two universes of the orders indicated. In  these 
formulae, in effect, terms to order -2 in.nl, n" are retained. 

When both samples are large the frequency distribution of z will approach normality 
provided that p, is finite. The effect of universal kurtosis can accordingly be assessed in a 
very rudimentary manner from (2.2) and (2.3). The z-deviate g corresponding to, say, the 
28 % normal probability point is g = 1.9600,/Mg. (2.5) 

If, however, the universe were not normal and had, in fact, a variance M, with /3, =!= 3, the 
actual probability of-a deviation in excess of g in absolute value would be, not 0.05, but the 
normal probability appropriate to a unit variance deviate of 6H,*.On this consideration 
the actual probabilities for different values of P,, where the assumed probability is 0.05, are 
shown in the fifth column of Table 1. 

Table 1. Effect on probability of z of change in universal,kurtosis, for large samples 

Pa M,O/Ma J(M:IMa) 1.9600 J(MiIMa) Actual 

1.5 4 2 3.9200 0.000089 
2 2 1.4142 2.7718 0.0056 
2.5 1.3333 1.1547 2.2632 0.024 
3 1 1 1.9600 0.050 
3.5 0.8000 0.8944 1.7530 0.080 
4 0.6667 0.8165 1.6003 0.110 
4.5 0.5714 0.7559 1.4816 0.138 
5 0.5000 0.707 1 1.3859 0.166 
5.5 0.4444 0.6667 1.3065 0.191 
6 0.4000 0.6325 1.2397 0.215 

The table shows that, if the universe from which the samples are drawn has /3, = 6, the 
true probability is about 1 in 5 instead of the assumed 1 in 20. It is, of course. true that 
universes with so large a kurtosis are unusual. This view cannot be held of the range 2.5-4 
for p, in which the probability, assumed to be 0.05, can be anything, in fact, from 0.024 
to 0.1 10. Accordingly, if universal kurtosis is markedly negative, use of the standard table 
masks significant differences; if kurtosis is positive the standard table exaggerates these 
differences. Unless systematic tests have established that kurtosis is negligible the standard 
table should not be used for testing s i m c a n t  differences in variance. 

The foregoing analysis gives a theoretical explanation of the striking experimental results 
of E. S. Pearson (1931 b) working, however, with a test function 

and with sample' sizes n' = 5 and n" = 20, smaller than those contemplated in the present 
analysis. With 500 samples Pearson showed that when the frequency at the two tails 
together expected from normal theory was 15.4 (=probability 0.0308) the frequencies 
actually found in symmetrical universes with B2 = 2.5, 4.1 and 7.1 respectively were 7, 39 
and 47, equivalent to probabilities of 0.014, 0.078 and 0.094. 
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/?, is unlikely to be accurate; the real P,are extremely large the estimate of 

Testing for normality 

If tests of normality indicate universal kurtosis, either of two courses might be adopted: 
(i) Assume that z is normally distributed with variance M2 computed from (2.2) with 

(/3, -3) estimated as k,/k$ from the sample, k, and k, being R. A. Fisher's (1929) cumulant 
functions. 

(ii) Enter the standard table, not with z computed from the samples but with z J(M$/M2), 
estimating M2 as in (i). 

Both of these procedures are, of course, open to the objection that, unless the samples 
might be larger 

or smaller than the estimate. Any probabilistic inferences should accordingly be accepted 
with reserve. 

It is fortunate that the condition specified in the foregoing paragraphs, namely, that the 
numbers in the two samples are both large, rardy applies m practical applications. It more 
usually happens that the number of classes is small, whereas the number per class is relatively 
large. In this case E. S.Pearson (1931 6 )has shown the first approximation tog4 is independent 
of p,, from which he inferred that the actual probability when the total number of samples 
was large was inconsiderably influenced by kurtosis. In  view of the foregoing analysis it 
seemed to the writer desirable to carry the inquiry a stage further. 

Suppose, then, that k samples are drawn at random from the same universe, nj in the jth 
sample, the total ni = n. It is assumed that n is so large that terms in n-2 are negligible, 

I 

that the number of samples k is small, and that all the nj are of the same order of magnitude 
as n. i.e. that if h 

none of the nj is negligibly small. 
Using R. A. Fisher's cumulant notation with subscript to indicate the sample from which ,

the cumulants were computed, the mean for the jth sample is written klj and its variance 
k,. Then X 

z = *log-
Y' (2.7) 

- 1
where ( k - l ) X  = xnj(k,j-kl)2 = Cnjks--x2njklj ,  


i n 


so that 

and (n-k) Y = x(nj-1)k2j, 
j 

so that Y = Z#j kzi, 

where 

Without loss of generality let the universal mean be zero and the variance unity. It may 
easily be shown that E X = E Y = l .  

Set 

Then w = {1+(X-1)}{1- (Y-1)+(Y-1)2- (Y-1)3+ ...), 

w2 = { 1 + ( ~ -1 ) } 2 { 1 - 2 ( ~ - 1 ) + 3 ( Y - 1 ) 2 - 4 ( Y - l ) ~ +  ...).I 




We shall compute the approximate values of Ew and E w ~ ,  i.e. the-values to order n-l; the 
symbol == denotes 'equal to, to approximation required'. From values of the variances 
and covariances given by E. S. Pearson (1931 b) in his equations (9)-(ll), we have 

with a, = En;. 

k-1(,)We require 

i 
2 
X2== Znf (1  -nj)2 k:, -4 2 2nf(1- q)nj,%klY 

i j j' 

remembering that, by definition of cumulants, 

Ek,, = A, = 1. 

Also (Y- = x$;ki4+ 2 cx$j$l'k;jk;i.. 
j >j' 

It will be useful for what follows to note thab 

$j==nj. 

Using R. A. Fisher's formulae (1929) for formation of joint semi-invariants of k1 and k,, 
and noting that the k -samples are independent, we find from the foregoing 

n(k-1) EX(Y-1)2==(k-1)(A4+2), 

n(k- 1)2 EX2( Y - 1)fi2(k2- 1)A,, (2.10) 

n(k- 1)2 EX2( Y - 1)2& (k2- 1) (A, + 2). 

Then, from (2.8), (2-9), (2.10)' 

These are the formulae required. It will be noted 
(i) that the terms free of n-l are independent of A,, which is equivalent to E. S. Pearson's 

result (1931 b); 
(ii) that the formulae (2.11) agree with the normal values 

k+t(l-~)-i(l-~)-l==~(l+~),J
EOw2= ii-1 n-lc n-k ii-1 

to n-l when A, = 0; 
(iii) the approximations a t  (2.1 1) are free of A,. 
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The approximations a t  (2.11) tend to confirm E. S. Pearson's result that, when n is large 
compared with k, the effect of universal kurtosis is unimportant. It would be useful, however, 
to compute the approximate true probability for different values of k, n, h4and a_,. For this 
and for subsequent work the following lemma* will be found useful: 

Iff(x) and $(x) are two frequency densities with semi-invariants Lm and Lk (m = 1,2, ...), 
respectively, then, formally, 

m! dx 

For the present application take as generating function $ the frequency distribution of w 
in the normal case, i.e. 

$(w) = n-k-2 (2- 14) 

and,. from (2.1 l) ,  

Assume that Lm-Lk==Q (m+2). 

Then if the 'normal theory' probability corresponding to the sample value w be p ,  the 
approximate 'true' probability, subject to (2.15), will be about ( p  +pl), wherep' is given by 

The term p', of course, merely corrects for the non-normal term in n-1 in the variance of z; 
it  takes no account of corrections due to terms of higher (negative) orders in n or even of 
non-normal terms in n-1 in semi-invariants Lm (m >2). The calculation is designed merely 
to show whether the standara table probability requires correction for universal kurtosis; 
this will appear if p' is of the order of magnitude of p. 

(b )  The t-test 

In  Geary's 1936 paper the expansion to terms in n-2 of the first four moments oft, where 

t = n+k,/k:, (2.17) 

were given. Following are the first six semi-invariants L of t to the same' approximation as 
in the earlier paper: 

Throughout this subsection we take hm= ~; /h ; ;*~ ,  
* Due to Charlier and termed the "Differential Series" by the Scandinavian School. 
t 1936 formula corrected. 



where the A', are the semi-invariants of the parent universe. For these expressions terms in 
n-Q are neglected. They were derived from the moments (from zero) Mi of t ,  which were 
obtained by the method described in the 1936 paper. It.will be noted that, to the approxi- 
mation used, the expressions involve only the first six semi-invariants of the parent universe. 
When the parent universe is normal all the A, (i> 2) are zero. The magnitude of the numerical 
coefficients in the foregoing approximate expressions for the L, indicate that, when the 
universal values of the A,, particularly those of uneven order, are not very small, the frequency 
distribution of t may differ appreciably from the classical Gosset-Fisher (1908, 1925) dis- 
tribut,ion. 

The formal Gram-Charlier expression for the frequency of t could, of course, be written 
down a t  once from (2.18). It is doubtful, however, if the Gaussian can be regarded as the 
most appropriate generating function for the frequency oft  because, even when the parent 
universe is normal, the semi-invariants Ti, of the higher even orders are large for moderate 
values of n. For example, 

It is proposed to use (2.13) for finding the approxiinate frequency with 

the Gosset-Fisher frequency. Let 

It can easily be shown that the rth derivative (in t) of TIis 

( n+ r - l)! r(r- ?(?- 1) (r -2) -3)tp-',
Tf)(t; n) = ( - (n- l ) !  (n - l y  tr-nl-
2 

') tr-2 + n, 
2.4 


with n, = --
n-1 

n - (n-
n -

(n-
etc.n + l '  - ( n + l ) ( n + 3 ) '  3 - ( n + l ) ( n + 3 ) ( n + 5 ) '  

Note that (2.21) assumes the Hermite form when n = co. 
The theory will now be applied to particular examples using in all cases n = 10. The 

universes will be assumed to belong to the Karl Pearson system, so that (M. G. Kendall, 
1941) the values of A, and A, can be derived (given A, and A,) from the following equations: 

Prom the first two equations 

which, substituted in the first equation of (2.22), gives C. The values o f t  and 7, substituted 
in the thirdand fourth equations, give A, and A,. From (2.18), the Li being the semi-invariants 

Biometrika 34 15 
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when the parent universe is normal (i.e. the values found when all the A's are set equal to 
zero), L,-L;--J,n-*+K,n-8, L4-Li--J4n-1+-K4n-2, 

L2-L;--J2n-1+K2n-2, L,-L;- Ksn-8, (2.23) 

L,-Lk--J,n-*+Kan-P, L6-Li-- K6n-2. 

The J and K are the terms in the A in (2.18). To n-2 (i.e. ignoring 12-8) the frequency generated 
from T of (2- 19) is as follows: 

with 

To n-l, (2.24) agrees with the formula given by M. S. Bartlett (1935), in which, however, 
there is a small and obvious slip in a sign. The law of formation of the numerical coefficients 
of (2.24) is evident; for instance, the numerical coefficient of D8J2 J; is 11144 = 1/2! 3!22!. 

The integrals S t a n d  J-t(t> 0) are found by reducing the exponent of D byunity, as follows: 
-a 

In normal theory the upper and lower 24 % points of t  are + 2.262 for n = 10. Table 2 
shows the 'true' probabilities, i.e. the value of 

J-2'262f(t) at-a 

for parent universes specified by 'A,, A,, using (2.24). 
There are two observations to be made on the results presented in this table. The first is 

that, despite the considerable number of terms (shown at (2.24)) included in the probability 
expansion, the values found in the successive tefms cannot be regarded as satisfactorily 
convergent for so small a sample as 10, and, of course, the convergence disimproves with 
increasing.@,. Taken all together, however, they seem consistent and significant. The second 
observation is that attention was confined to the negative 'tail' of the distribution. It may 
be assumed that, in all cases, the distortion would be very considerably less marked if 
regard were had to the probability for I t I .> 2.262. Actually for universe 3 the probability 



is 0.066, not significantly different from the normal theory probability of 0.06. In justifica- 
tion of the attitude adopted above, the point might be put as follows: 

We decide to accept the hypothesis that the universal mean is zero provided that the value 
oft  found from the particular sample satisfies to <t <t,, where 

Prob (t < to)= Prob (t > t,) = 0.026. 

The table is designed to show that if the parent universe is markedly asymmetrical the 
range (to, t,) may differ appreciably from -to = t, = 2.262. 

Table 2. Probabilities oft less than -2.262 for samples of 10 for seven universes 

Universe As =4% h 4 = p 8 - 3  Probability 

Normel 0 0 0.026 
2 0 1 0.024 
3 0 0.041 
4 $72 112 0.047 
6 1 0 0:07?? 
6 1 1 0.086 ? 
7 112 112 0.043 

I 
As anticipated by earlier work (W. S. Gosset, 1908; R. C. Geary, 1936), the table shows 

that the distortion is slight for symmetrical universes; even when A, = 1 (and A, = 0)the 
probability (0.024) is practically identical with the normal value. There can be little doubt 
that the standard table probabilities can be seriously a t  variance with the true probabilities 
when the universes from which the samples are drawn are markedly asymmetrical. 

(c) Difference of means 

R. A. Fisher's (1925) test of significance 

for the difference of averages k; and k; in normal theory for random samples numbering n' 
and n" is, of course, a particular case of the analysis of variance considered in 5 (a) above. 
The second cumulants are k; and G. It is assumed that the unknown universal means and 
variances are equal. Suppose now that the random samples in reality have been derived 
from universes in which the means are equal but the other semi-invariants A; and A; are not 
necessarily zero for i 2 2, or even necessarily equal. Since the universal means are assumed 
equal, without loss of generality we may take A; = A; = 0. This general mathematical model 
seems to be the correct one; we are not trying to determine the probability of the samples 
being derived from the same universe but rather if they could conceivably have been drawn 
from universes with the same arithmetic mean, however much they may differ otherwise. 
The correctness or otherwise of the concept may be considered in relation to, say, the 
problem of deciding from two random samples which of two types of fertilizer is to be pre-
ferred from yield observations on a given crop on a given kind of land. Undoubtedly the 
prime problem will be that of ascertaining which is probably the better yielding (i.e. whether 
the arithmetic means are significantly different). Of considerably less importance is the 

15-2 
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question of which fertilizer is the more variable; of less importance still is the question of 
deciding, say, whether with approximately equal yields one universe is symmetrical and 
the other mirkedly asymmetrical. The point is that the question of the equality of universal 
means should be considere9 without assuming that the other semi-invariants in the universes 
from which the samples have been drawn are necessarily equal. This essentially is also the 
viewpoint in R. A. Fisher's randomization method. 

Expanding the denominator of (2.27) in terms of (k; -hi) and (Ic'! -A!!) and computing 
therefrom the first few terms of the first four moments oft, we find the following approxima- 
tions to  the first four semi-invariants: 

6(n'hh2+ n"A!i2) A!! 2A4L,2 - hi A," (hi- A,") 
+n"Xi)2 (2+ 2)-6(3 -*)(.'A: +nllZ;) 

with 

Using formula (2.24) to the term in n-l with the Gosset-Fisher function again as generating 
function, Table 3 shows rough approximations, for four examples, to the 'true' probability 
of values oft < 7, where 7 is the (negative) value for probability 0.d26 from the normal table, 
and A; = A!! = 1. When the two samples are drawn from different universes the distortion 
can accordingly be considerable. The third example suggests that if the universes are the 
same the distortion is small, a result to be anticipated from ihe fact (apparent from (2.28)) 
that, to the approximation used, the first two semi-invariants are equal to their normal 
theory values; this theory confirms the experimental results of E. S.Pearson & N. K. Adyan-
thaya (1929). 

Table 3 

Example n' n" A; A; 4 Probability 

-- 

12 
18 
7 

10 

4 
6 
4 
6 

1 
1/42

1 

1 
1 

112 
1 

- 1  
- 1 
112 
0 

0.045 
0.041 
0.027 
0.036 

--- 



It should be remarked that the probabilities in Table 3 (as well as in Table 2) are merely 
rough approximations-the samples used are far too small for the results to have any preten- 
sion to accuracy. The object has been merely to show that the actual probability could be 
considerably at variance with that shown in the standard table, for small samples. 

3. SUFFICIENTCONDITIONS FOR APPROACH TO NORMALITY OF U(C) WITH INCREASING n 

The remainder of the paper deals with the field of symmetrical tests of normality, homo- 
geneous of degree zero, represented by (3.1). It is essential to establish the conditions of 
approach to normality of the frequency distribution of a(c) as the sample number increases. 

Let 

where 5= Zxd/n and c is non-negative. It will be shown in succession that, subject to stated 
conditions, with increasing n, 

{i) the frequency distribution of 

. . 
tends towards normality, and 

(ii) the frequency distribution of al(c) tends towards that of a(c) and hence towards 
normality. 

It is assumed, without loss of generality, that the universal mean of the universe from 
which the sample of n is drawn is zero. Denote the kth absolute moment from zero by ,ulkl, 
k not being necessarily an integer. Given a positive quantity s arbitrarily small, w(s) can be 
found so that 

Prob -Z(xq -p2) < w 4---- > I -€ ,(1: I A n )  
provided, of course, that p,2cl and p, exist. As n increases w may be envisaged as approaching 
the normal probability point appropriate to the probability s, since, in the conditions stated, 
Z I xi lc/n and ,YxS/n are normally distributed in the limit. For samples which satisfy the 
inequality in the brackets ( ) a t  (3.4) and if n is so large that 

the denominator of (3.2) can be expanded to three terms (including the remainder) by 
Taylor's theorem, so that al(c) may be written 

with 
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With probability exceeding (1 -s) it is evident, from (3.4), that X is maximized by 

I t  will suffice, for the present purpose, to infer that 

I X I < K ,  

where K is a constant independent of n. We have now 

Set 

and 

with 

For samples which satisfy the inequalities in { ) at (3.3) and (3-4) and hence with a pro- 
bability exceeding (1 -%), we have 

where< is independent of n. Or, briefly, 

so that u tends in probability towards zero with l/n. Now (3.7) may be written in the form 
2'' =u - Y, where Y' and Y are the respective terms on the left side. If A be any number 

and F the total probability function, a well-known lemma (Frbchet, 1937, p. 164) shows that 

using (3- 10). Hence the frequency distribution of 

1
tends .towards that of Y = -126 z ( ~ ~ - ~ Z ~ )  (3.13) 

at  every continuity point of the lakter frequency, as n tends towards infinity. But Y, from 
(3.13), is the simple average of n random measures, and i.ts frequency must tend towards 
r~ormality provided that its standard deviation exists; from (3.6) it is evident that a is 
finite provided that pi,,, where k is the greater of 2c and 4, is finite. Here and in the remainder 
of this seotion iti will be useful to ru~uernber that if plkl exists so does pIktIfor 0 <k' <k. 



To prove that the frequency distribution of a(c) tends towards that of al(c) and hence 
towards normality with increasing n it will be shown that Z I xi -3lc/n tends in probability 
towards Z I xi Ic/n. Two cases will be considered sepa~atelyl (1) c > 1, (2) 1 > c> 0. 

Case (1). c2 1 
For values of xi for which I xi 1 > 1 I 1, 

1 X ~ - Z  I C - I X ~ : , C = ~ ~ C P I X , - ~ Z I C - ~( o < e < i )  

and when [ x i ]  < 131, 1 ].xi-3 1 ~ - 1 xi lc- l  5(2c+ 1) 13lc. 
BHence (lxr-rlp-(1xiIc) lxilc-l+Qlzlc-l (3.14) 

B end C being independent of the x, and n but depending on c. With s arbitrarily small 
w can be found so that 

Hence, from (3.14) and (3.15), if y, and yl,-,, exist, 

Prob 

for n sufficiently large the constant B' depending on c but not on n. Hence for c 2 1, 
Z 1 xi -I lc/n tends in probability towards 2 1 xi lc/n. Incidentally, this proves that 
{Z(xi-3)2/n)*Ctends in probability towards {Zxf/n)Q, the latter two expre,dions representing 
respectively the denominators of a(c) and al(c). 

Case (2). 1 > c >  0 
Let Z satisfy a probabilistic inequality identical in form with the first equation of (3.15) 

and let y be any positive quantity, fixed once for all. Let n (presently to be defined further) 
be so large that 

Then 

When I xi I 2 y.(i.e. in Z'), 

I X , - I I C - I X , I C  = ( o < e < i ) ,f ~ i E I x ~ - e ~ I c - ~  

so that 

When I xi I < y (i.e. in C),given 7 arbitrarily small and positive, n can be found so that 

IIxi-IIC-1x,iIC1<v, (3.18) 

when 12.1<uJ"f, 

since I x I c  (c> 0) is uniformly continuous in 2. We then have 

Prob{lI X , - Z I C - - I x, I c /  <7)> 1-s. 
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Combining (3.17) and (3.19), it  may be inferred that 

the first term of the upper limit in { ) tending to zero as n tends towards infinity, and e and 7 
being arbitrarily small 

We have accordingiy shown that the numerator and denominator of a(c) tends in pro-
bability towards those of al(c). Hence a(c)tends in probability towards al(c). Hence, using 
the lemma cited a t  (3.11),the total frequency of a(c)tends towards that of al(c)which tends 
towards normality as n tends towards infinity. Finally: 

I f  c 2 0 the frequency distribution of a(c),given by  (3.1),tends towards normality as n tends 
towards inJinity provided that'p,,,, where k i s  the greater of 2c and 4, i s jinite. 

It seems likely that an andogous theorem can be proved for 0 >c > -4; we shall not, how-
ever, be concerned in this communication with negative values' of c. 

While it will be shown in later sections that, with indefinitely large samples, Jb, and b2are 
the most efficient tests of asymmetry and kurtosis, respectively, it by no means follows that 
other tests are inefficient or that they may not be useful supplements in cases in which the 
prime tests are indecisive as to the non-normality of a given sample. It is accord-
ingly proposed to give here close approximations to the first four moments (from the origin) 
of a(c)(given by (3.1))for normal random samples of n. 

For normal samples (R.A. Fisher, 1929; R. C. Geary, 1933) 

The exact value of the denominator is, of course, known, for 

since, as usual, (n- 1)s2 = 2(xi-Z)2, I t  will be useful to expand log, Esw with k' = ck using 
Stirling's formula in (4.2): 

k' 2
log, Esk' = -log -+log

2 n - 1  

-- (k12- 2k')-k'(kl-1)(k' -2)  k'2(k1-2)2 k'(kl- 1) (k' -2)(3kr2-6k' -4)  

4(n- 1) 12(n- 24(n- - 120(n-+ 

+k12(k'-2)2(3k14- 12k13- 4k12+32k1+32) 
336(n- 1)' 9 

which checks for k' = 1 to (n- 1)-7 with Geary (1935,p. 354). Take 

v(c)= -
1 "x 1 zi lC,
ma-1 

-
with zi= xi -x. 



The moments of v(c) will be found exactly as in the case of c = 1 (Geary, 1936) from the 
single or joint normal frequency distributions of (z,, z2, ...). We find 

(4.6)
For the third moment we write 

denoting the three terms on the right by A,, A,, A, respectively. Then 

Similarly, for the fourth moment, 

3n(n- 1 )  6n (n -  1 )  ( n -  2 )  
n4  Iz21s+ E I ~ I I * , I ~ ~ I ~E I Z I I ~ ~  n' Iz3IC 

+ 

with 



224 Testing for normality 

Formulae (4.5), (4.6), (4.7) and (4.8) were checked from the corresponding formulae for 
c = 1 given in the author's 1936 paper. 

From the following section it will be apparent that for indefinitely large samples the most 
sensitive test of kurtosis of the field a(c) is found for c = 4. At the same time it is shown that 
there is really not much difference in efficiency for values of c in the range 5 2 c>2; moreover, 
the results in 3 6 (inwhich the efficiency of the tests for c = 4 and c = 1, are compared from 
the power function viewpoint) suggest that, for samples of moderate size, the superiority, 
if any a t  all, of a test using a(4) = b2 over other tests in the series may be even less marked. 
The disadvantage of a(4) is that its frequency is not known for samples of all sizes; and if we 
could estimate, with any degree of confidence, the probability points of a(c) for any value or 
values of c > 2 for medium-size samples we might, for practical purposes, dispense with a(4) 
altogether, since, while we now know one way of solving the problem of determining the 
exact, or almost exact, frequency distribution of a(4), it must be admitted that the method 
is extremely tedious. (From the theoretical point of view, however, the a(4) problem must 
be solved since it remains a challenge to the mathematical skill of statisticians!) It will 
accordingly be of interest to study the order of magnitude of trle semi-invariants of a(c) 
for c near 2. 

Consider the case, for example, of c = 2.4, not by any means, it is important to 
observe, the lowest value which would be used for tabulating. In Table 4 the first three 
moments are given for n = 25. The L's represent, of course, the semi-invariants. The values 
of the functions for al(c) (given by (3.2)) for n = 24 (i.e. the appropriate number of degrees 
of freedom for comparison with a(c)) are also given. These show that the moments of al(c) 
are very close to those of a(c), which suggests that, when n is not less than, say, 20, the values 
of B,, B, and corresponding functions of higher orders, if required, for a,(c) could be used 
for the determination of the probability points of a(c). This is important from the com- 
putational point of view because the algebraic expressions for the normal moments of a , ( ~ )  
are exceedingly simple whereas it must be conceded that (4.8) offers a grim prospect for the 
computer; furthermore, the principal term C5is rathpr slowly convergent unless n >50 or so, 



whereas exact values for all values of n can readily be found for the moments of a,(c) for normal 
samples. 

Table 4. Normal moments, etc., of a(c) and a,(c) for c = 2.4 

As with (4.1) for a(c), the moments (from the origin) of any order of a,(c) is the quotient 
of the moments of the same order for numerator and denominator, assuming that the 
universal mean is zero and the variance unity. Since the different members xi of the sample 
are independentthe difficulty with a(c) is that the (xi -2) are not independent-for the 
moments of the numerator of (3.2) we require only 

kt -1 2ak'dx xw e-aza = 
!F,

and for the denominator 

The case of c = 4 is particularly simple. The first four semi-invariants are as follows: 

Moments, etc., for al(c) for normal samples of 24 and 50 are contrasted for c = 2.4 and 
c = 4 in Table 5. The contrast between the values of dB, and (B2- 3) respectively for 
a1(2.4) and a1(4) is striking in the extreme. Even for n = 24 dB, [a1(2.4)] and B2 [a1(2.4)] 
are approaching the values at  which a Gram-Charlier approximation to the frequency 
distribution may be reasonably convergent. Furthermore, the decline in the values of the 
B's from n = 24 to n =60 is marked for a1(2.4), while the decline in the B[al(4)] is very slow. 

It is accordingly suggested that a table of probability points (perhaps 0.001, 0.01, 0.026, 
0.05 and 0.10) of a(c), for c equal to, say, 2.2, be prepared for n 2 25 on the assumption that 
Gram-Charlier 9pplies throughout. For this purpose the values of the mean and variance 
for n at  intervals of, say, 10 should be computed from formulae (4.5) and (4.6); the B, and 
(23, -3) should, however, be computed as for a,(c). For lower sample sizes it might be well 
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to use terms to order n-2 which would render necessary the use of the fifth and sixth semi- 
invariants of a,(c). The formulae given by E. A. Cornish & R. A. Fisher (1937)(assuming 
Gram-Charlier) could be used to find the probability points. On account of the minuteness 
of the variance L,for c near 2 it will be necessary to work to many places of decimals-at 
least 10. As stated a t  the outset, the test of kurtosis 42 .2 )  will be only slightly less efficient 
than a(4)and it may be slightly more efficient than a ( l ) ,the probability points of which are 
known approximately for samples of all sizes. In  any case the 42 .2 )  table would be a useful 
adjunct to that of a(1) .  

Table 5. Normal moments, etc., o f  a,(c) for c = 2.4 and c = 4 

In an earlier paper (1935)the writer suggested that the correlation between b, and a(1)  
for normal samples gave some indication of the relative efficiency of these two tests of 
normality. In this order of 'ideas it seems desirable to compute the approximate value of 
the correlation coefficient between a(c)and a(cl) ,where c and c' are any two positive con- 
stants. In the first instance the universe from which the sample of n was drawn was not 
necessarily normal. Since in the present application we will be concerned only with large 
samples we assume the universal mean known (and accordingly it may be taken as zero, 
i.e. A, = 0) ,so that, instead of a(c)we use, in reality, a,(c) given by (3.2). In the remainder 
of this section we write a for a,(c) and a' for a1(c1): 

Set 

Then 



-- 

The mean value of aa'/aal was found approximately (i.e. to terms in n-3) by formally 
expanding the last factor in (4.15), multiplying by the first two factors, and setting down 
the mean value term by term, so that 

--5
nP

[n(Eyz3+Ey'z3)+3nn - 1 Ez2(Eyz +Ey'z)] 

-
C4 4n n-1Ez3(Eyz+Ey'r) +6n n -1 Ez2(Eyz2 +Ey'z2)]+;Es[ 

--30C5nn- l n - 2  
E2z2(Eyz+Ey'z) - s n ~ ~ ~ ' z

n6 2 n3 

--4
n5

[nn-1 Eyy' E z ~ +  3nn - 1 (Eyz2Ey'z+ Ey'z2Eyz +Eyy'y'nE)] 

The E's in (4.16) are readily calculable from (4.14), e.g. 

EYY'= = - ~ l e ' l ) / ~ l c l ~ ~ c ' l  ( P I ~ + ~ ~ / P I ~ I P I ~ ' I )1'EY~Y; E(I xi IC-~1cl)  ( 1  xi I d  = -

It has been verified that when c is substituted for c' in (4.13) the formula agrees with that 
for the second moment of a,(c) given in $ 6. 

The coefficient of correlation is, of course, 

RW = Mw*/%~%cMc,c*), (4.17) 

with M,. = Mi,, -Mi Mi,. 

Formulae for the first and second moments, to the approximation required, for the com- 
putation of (4.17) are given in $6.  

As an application, the following are the values of the variances and the covariance for the 
test of normality a(1) and (b,), i.e. in which c and c' have respectively the values 1 and 4, 
and where the universe belongs to the Pearson system with h2 = 1, h3 = 0 and h4 = 4: 
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From. (4.17) and (4.18), R,,(n= loo)-- -0.826 and R,,(n=co) = -0.764. It is of great 
interest to find that, though the universe is markedly non-normal the correlation for in- 
definitely large samples is practically identical with the normal theory value of -0.767 
(Geary, 1935), another indication, no doubt, that normal theory inferences can usually be 
applied with confidence when the parent universe is not markedly unsymmetrical. 

When samples are indefinitely large we h d ,  from (4.16) and (4.17), 

where, of course, the values to be taken here for M, and Mctct are found by substituting 
respectively c' for c and c for c' in the numerator. When, in addition, the parent universe is 
normal, we find 

c+cf-1 cc' +2( 2 ) ! ~ n - f $ ) ! f $ ) ! ( ~ )  

2c' -1 cf2+2J[(rG)r; !I2rq)]((+ !&- f$ !I2(T)]]!,/n-

which reduces to -1/4{12(n- 3)) for c = 1, c' = 4, as it should (Geary, 1935). The following 
section will accord b, (i.e. a(4)) a decided primacy amongst tests of normality when the 
samples are indefinitely large. It may, therefore, be of interest to give the values of the 
correlation coefficients (for indefinitely large normal samples) between b, and a(c) for 
selected values of c (Table 6). The table suggests, in the high coefficients of correlation, 
except for c very near 0 or 2, that all the a(c) should be reliable tests of kurtosis, with no great 
difference between their efficiencies. The efficiency of any two tests would be identical, in 
the conditions stated, if the coefficient of correlation between them was + 1 because then, 
of course, they would be functionally, and no% stochastically, related. 

Table 6. Correlation between b, and a(c) for indesnitely large normal samples 

Value of c Value of Rz, Value of c Value of R:, 

0 0 3 0.980 
1 -0.769 4 1 
2 0 5 0.983 
2.2 0.887 6 0.939 
2.5 0.952 03 0 

5. THEMOST EFFICIENT TESTS FOR INDEBINITELY LARUE SAMPLES 

In this section we consider the efficiency of tests of kurtosis and asymmetry from the view- 
point of indefinitely large samples. 

By definition a test will be regarded as valid, in relition to a field of continuous alternative 
universes including the normal, if its value for infinite samples drawn a t  random from the 
normal universe is different from its value for inhnite samples from other universes of the 
field. As the sample number increases the test will become increasingly discriminatory of 
the normal as distinct from other universes of the field. This increased sensitivity might be 
given mathematical expression in some such terms as the following: given a probability a 
(say 0.01), the normal universe W, of the field and any other distribution W, of the field, 



a number ni can be found so that for n 2 n, the mean value of the test function for samples 
of n from W,will lie at  or beyond the a probability point of the test function for samples of n 
from Wo:the smaller n, the more sensitive the test. 

We consider, then, the infinite field of alternative tests of kurtosis represented by (3.l) 
when c assumes all positive values, and the infinite field of plternative universes represented 
by the ram-~harl'ier frequency 

1

m) 2(-&)'Iexp (,$3 e-v 

The universal variance is assumed to be unity, without loss of generality. The normal 
universe is a member of the field: it is found when all the A, (i > 2) are zero. We assume that 
the conditions of 5 2 are satisfied so that for indefinitely large samples the frequenoy dis- 
tribution of a(c) for all parent universes is normal. Obviously the efficiency of any particular 
test (i.e. a(c) for a particular value.of c) in regard to the normal and a particular non-normal 
alternative (i.e. m Gram-Charlier frequency with particular values of the A+) will be adjudged 
by consideripg the ratio of 

(i) the difference between the universal mean values of a(c) for the normal and the 
particular non-normal parent universes; to 

(ii) the standard deviation of a(c) for indefinitely large normal samples. 

The most efficient test will be a(c) for c a theoretioally ascertainable function of the given 


A, 	 which makes the ratio a maximum. 
For indefinitely large samples the mean value 4 of a(c) when the parent universe is given 

Obviously 

~ l s o ,when m 2 1, 

a result readily inferable .from the ,obvious fact that the left side vanishes for c = 0,2, . . ., 
2m -2. Accordingly 

The normal value is given by the first term. 
From (4.3), (4.6) and (4.6) it is evident that the value of the standard deviation, for larger 

normal samples (retaining only n-a) is 

The principal term in the deviation $h - 4 0  (where$0 is the normal value), from (6.4), is 
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To a constant factor, the ratio 6/nis given by theJirst discriminant 

It will now be shown that dp(c)-= 0 for c = 4.
dc 


The discriminant may be written in the form 


where 

and 

From (5.9) 

From a fairly well-known ~jroperty 

I n  (5.10) we shall be concerned only with even positive integer values of c. We have a t  once 

= ["do 0 log cos 0 =From (5.1 1) J, C O S ~ ~  Cnd(sin 0) COS"-~ 6 log cos 6, 

which, by partial integration, 

6 sin 0) 
=1; do sin 0 (~e- l  6 log cos 0 +cos"-I

sin 0 00s"-2 
cos e 

= ( 2 ~- 1)(J,-P -J%)+ IZc-2 -1,. 

Hence 2cJLc= ( 2 ~- 1)J2c-2 -Izc+12c-2. (5.14) 

From (5.12)' (5.13) and (5.14)' 

Jo=- 4.77 log 2, J, ( -60nlog 2 +37n)/384, 

J, = (-2nlog 2 +77)/8, J, = (-8407~log2+533n)/6144. (5.1 5) 

J4= (-1277 log 2 +7n)/64, 

Noting that I:, = 2J, and substituting in the right side of (6.10) the values of I and J given 
by (5.13) and (5.15), we findp'(4) = 0. Table 7 gives the values of the discriminant for certa8in 
values of c. 

The discriminant accordingly assumes a maximum value for'c = 4, a result so remarkable 
that one might be inclined to suspect that i t  is a consequence of the form which was assumed 
for the alternative to the normal curve, a form which, in placing such emphasis on A,, 



high-lights, so to speak, b, (=  A,+ 3 when A, = 1 for ind'efinitely large samples) as a test of 
normality. From the algebraic point of view this is anything but obvious: the property. 
emerges from quite a complicated piece of algebra. I t  may silso be emphasized that the field 
of alternatives (5.1) is not arbitrary; it is a general form of frequency distribution when all 
the hi are finite. Admittedly the discriminant takes account only of the term in A, in the 
expansion; but this is certainly the most significant term for a wide class of frequency dis- 
tributions, namely, those of homogeneous symmetrical functions of samples of n as n tends 
towards infinity under very general conditions for the parent universe, provided that the 
resulting frequency distribution can be assumed to have its third moment zero; for then the 
only term in n-I in the frequency distribution of the function will be the term in A,. The 
significance of the property demonstrated must not be overstressed since it is subject to 
many qualifications, but it gives strong grounds for holding that, for very large sbmples, 
6, is the most efficient test of normality of tests of type a(c) in relation to a very extended 
class of alternative universes. At the same time Table 7 shows that there can be little 
difference in efficiency in the field a(c) for c ranging from close to 2 to about 5. There is but 
little doubt, on this showing, that 6, is more sensitive than a(l) ,  a conclusion suggested on 
the basis of certain experimental results by E. S. Pearson (1935) and examined from the 
viewpoint of power function theory in 5 6. 

Table 7 

o < c < 2  Discriminant 
p(c) 

2<c<a3 Discriminant 
P ( C )  

+O -2.334 2 + 0  4.460 
0.1 -2.541 2.1 4.508 
0.2 -2.725 2.5 4.666 
0.5 -3.188 3.0 4.801 
0.7 -3.441 3.9 4.898 
1.0 -3.758 4.0 4.900 
1.1 -3.851 4.1 4.898 
1.5 -4.166 6.0 4.818 
1.9 -4.405 6.0 4.602 

2 - 0  -4.460 7.0 4.288 
8.0 3.906 

Adverting to (5.4) in conjunction with (5.5), it might be asked if, on the analogy of the 
maximal property just demonstrated for the first discriminant, the function 

-* 

has a turning point at  c = 6. The answer is in the negative. The value of pL(6)/p2(6) is, in fact, 
15/34.At  the same time there must be a zero of p;l(c) very near c = 6 since 

~ ~ ( 5 . 9 )= 8.79, p2(6)= 9.20, =~ ~ ( 6 . 1 )8.56. 

Analogous to the field on tests of kurtosis represented by (3.1) we may consider as a field 
of tests of asymmetry: 

g(c) = ,1{-rt1 xi -z I"+qZi-s)C)/(~,qXi-.)2)*C, (5.16) 

Biometrika 34 10  
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where Z' extends to the observations x, less than the mean Z and Z" to the rest of the sample. 
For c = 3 the test is, of course, Jb,. For normal samples 

the denominator of which is identical with the denominator of (4.1). Knowing the joint 
distribution (for normal samples) of (x, -Z), (x, -Z), .. . (Geary, 1936), there is no theoretical 
difficulty in finding the mean values of the terms of the numerator for positive integer values 
of k. Here we shall be concerned only with the first and second moments, i.e. those for (5.17) 
for k = 1 and k = 2. We require the normal distribution of z, = x, -Z and the joint distribu- 
tion of 2, and z2 = x, -Z.These are 

1 , :  277 (  n-2 e x ( 1 z z - ) z l z 2(n- 2) z , ,  z 2  z 1 z 2  (5 .1~ )( -2(n- 2) 

Clearly the odd normal moments of g(c) are zero. Then 

where El(zl, z,) is the mean value of the two-dimensional terms. We then have 

Also 

We now have all the expressions required for the variance of normal g(c). We require, for 
what follows, only the term in n-l which is 

Consider now a field of alternative universes represented by 

the 'first approximation to the law of error' (for universal variance unity), obviously the 
most appropriate asymmetrical field, for different values of the parameter A,, and con- 



taining as a member of the field the normal distribution found for h3 = 0. For indefinitely 
large samples from (5.24) the mean value of g(c) is 

Prom (5.23) and (5.25) 


the skew discriminant T(C) being given by 


Setting c = 3 and using (5.13) and (5.15), we find that ~ ' ( 3 )  = 0.Values of ~ ( c )  for four 
values of c are as follows: 

Accordingly, for indefinitely large samples the test of asymmetry g(c) is most efficient for 
c = 3, when the test becomes the familiar Jb,. The margin in favour of this value of c, as 
compared with others -in the range 2 Q c Q 5, is, however, quite small. 

6. TESTSOF KURTOSIS FROM THE POWER FUNCTION VIEWPOINT 

I t  may be useful to open this section with an interpretation of the results of the previous 
section from the point of view of the type of error theory of J. Neyrnan & E. S. Pearson 
(1933, 1936). For this we consider two universes of the field, the normal Wo and any non- 
normal universe W,, and two tests of kurtosis a(4) = b, and a(c,) for a particular value c, of 
c. Suppose that samples are sufficiently large that a(c), for samples from all universes of the 
field, may be regarded as normally distributed. 

Given a probability a,  a sample number n can be fdund so that the mean value of a(c,) 
from 1% lies exactly at, say, the upper a probability point of the distribution of a(c,) from W,. 
Then from the results established in the preceding section the value of a(4) for the same sample 
of n from W, could lie beyond the a probability pbint of a(4) for normal samples of n. 
Suppose that the rule adopted was to regard as non-normal all samples for which a(c) 
lies beyond the normal a probability point, and suppose that a very large number N of 
samples were drawn, No from universes not significantly different from normal "(defining 
'insignificance' in some manner) and 1V,from non-normal universes, so that N = No +Nl, 
where No and N, are not necessarily known in advance. Then using a(c,) the number of 
erroneous allocations will be approximately aNo +$N,, whereas using a(4) the number will 
be aNo +(4j-1)) N, (4 > p  >0), showing a definite advantage in favour of a(4). The same 
conclusion emerges whatever value of c+ 4 or whatever non-normal universe be taken 
for comparison. 

The type of error approach re~eals~the theoretical weakness of using the method of 5 5 
for the assessment of relative efficiency of tests of normality; namely that the proportion of 

16-2 
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errors of judgment, even using a(4), remains large, due fundamentally to concentrating on a 
single value (the mean) as typical or representative of samples from the non-normal universe; 
it is also a disadvantage that the sample number n, is necessarily a function of the particular 
value c, of c. The method has further disadvantages of which the principal are perhaps (i) a 
somewhat restricted field of alternative universes; (ii) the assumption that the samples were 
indefinitely large, essential to justify the normality of a(c) for samples from any member of 
the universe field. 

The Neyman-Pearson power function approach which will now be considered cannot be 
regarded as entirely free from these objections in its application to the material so far 
available from this research. I t  enables us, at  any rctte, to contemplate samples which, if not 
small, are within the range of experimental practicability. 

The problem of the relative efficiency of the different members of a field of tests of kurtosis 
a(c) will now be considered in its power function aspects. For the present purpose the power 
may be defined as follows: 

Given a probability a (say 0.01), a sample number n, a particular value c, of c and a 
non-normal parent universe W,, the power, in relation to these data, represents the frequency 
of a(c,) for samples drawn at random from W, lying beyond the a probability point for a(c,) 
computed from samples drawn from a normal universe. The greater the power the more 
discriminatory the test. Accordingly, it is in theory necessary to know the frequency dis- 
tribution of a(c) for all sample sizes, for all values of c and for all universes. Considering that 
the only frequency distribubion of the field contemplated which can be regarded as deter- 
mined for all sample sizes is a(1) for normal samples (Geary, 1935, 1936), many compromises 
are necessary to give any kind of practical effect to the power concept. The compromises 
proposed are as follows: 

( 1 )  The form a,(c), given by (3.2), is used instead of the form a(c) given by (3.1). 
(2) Only large samples are dealt with. 
(3) The field of alternative universes is reetricted. 
Using a,(c), the first four moments (from the origin) of al(c) for samples from any universe 

can be expanded without real dficulty, and so approximate frequency distributions (using 
the Karl Pearson or Gram-Charlier systems) can be obtained. As to (I), from experiments 
in a(1) and a(4) the writer has verified that, for medium-sized normal samples, there is little 
difference between the probability points (e.g. 0-01,0.05) of a,(c) and a(c), though the higher 
semi-invariants (given n )  are larger for the latter. In  regard to (2) and (3) little confidence 
could be reposed in the values of the moments computed from expansions even to n-3 unless 
the sample number was a t  least of the order of 100 when c is greater than, say, 3; and, even 
if the moments were known exactly, the empirical frequencies would be more than doubtful 
for small samples. The approach finds its main justification in the consideration that any 
errors due to these necessary compromises may be presumed to apply more or less equally 
and in the same direction to the tests of kurtosis compared; generous, perhaps too generous, 
advantage is taken of this justification in the concluding part of this section. 

Set, then, 

so that 

where a = PICIIPBC,~a = ( I  xi Ic-~~cl)I~~cl,= (x?-Pz)IPz, (6.3)Xi 




the universal mean being taken as zero, without loss of generality. Raising (6.2) to powers 
1, 2, 3, 4, expanding to the required degree the final factor, multiplying by the first factor 
on the right, and setting down the mean value of each term we find, to w3 ,  

where 



- -- - 
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the latter, of course, the same for a14 i.The ( f g )required for the computation of (6.4)-(6.7)are 

(6 .8 )is, of course, an immediate consequence of (6 .3 ) .The writer has checked the accuracy 
of formulae (6.4)-(6.7)by reference to the normal universe for c = 1. 

The reader will have no illusions as to the magnitude of the task of applying the foregoing 
theory to particular cases. The formulae are set down, however, in the hope that other 
researchers will be sufficiently sensible of the importance of, the theory to assist in building 
up a fairly extensive set of results. The writer has to be content, in the meantime, to consider 
the case of the symmetrical universe field given by 

when A, = 4, the normal being given, of course, for. A, = 0, and for c = 4 and c = 1. These 
values of c are selected because the theory in 5 5 his  suggested that a ( 4 )is probably the most 
efficient of the test-field a(c) ,while a ( 1 )is the only member of the field for which the normal 

Table 8.  Moments from formuhe (6 .8 )  

-(fs) 

Normal h4=.* Normal A4 =4 

(11) 4 5.428671 1 1.17091276 
(02) 2 2.5 2 2.5 
(12) 24 45.64286 3 4.8829787 1 
(03) 8 14 8 14 
(04) 60 138 60 138 
(13) 216 544.2857 21 44.106383 
(21) 256/3 177.71428 1.141593 1.75544898 
(22) 2,72013 2,481.92857 7.707963 14.766814 
(20) 3213 16.142857 0.570796 0.63834981 
(30) 352 799.142857 0.429204 0.6405182 
(31) 4,352 12,785,2653 3 5.236134 
(40) 23,552 73,250.178 2.002492I I I 



distribution is known for samples of all sizes. The necessary moments (fg) given by (6.8) 
are shown in Table 8. Based on the values in this table, moments (M' )given by (6.4)-(6.7) 
of al(c)  and semi-invariants (L )derived therefrom are as follows. The normal values are, 
of course, known exactly but were computed for the purpose of checking the formulae: 

c = 4;normal universe 

c = 4;universal A, = 4 

c = 1; normal universe 

c = 1;  universal A, = & 

pill = 0.78126197. 


Two sample sizes were considered: n = 100 and n = 500. For n = 100 and c = 4, the 
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following are the Pearson Type I V  frequencies of a1(4) when the parent universes are normal 
and have A, = p2-3 = 4 respectively: 

Normal: A, = 0. K ~ o s ~ ~ . ~ ~ ~ ~dx,0 e13.01543e 

tan 8 = (x- 1.873387)/0-765869, (6.10) 

log lo^ = 3.2644596. 1 
A, = 4: Cos6.0096 0 e2.3i2se 

9 

tan 0 = (x-2.8522)/0.9062, (6.11) 

l 0 g l 0 ~= 7.7499974. i 
The normal probability points shown in column (2) of Table 10 were derived from the fore- 
going normal frequency (6.10); the points in column (3) were clerived from a Gram-Charlier 
formula (Geary, 1935). The 0.01 and 0.05 points given in column (2) are practically identical 
with those given by E. S.Pearson (1929) for a(4), namely, 4.39 and 3.77. The powers given in 
column (4) are the aggregate frequencies lying beyond the values of the variate shown in 
column (2) on the assumption that the actual frequency was (6.11). The corresponding 
figures for c = 1 given in column (5) were based on a Gram-Charlier formula. 

Table 9. Power of al(c) for c = 4 and c = 1 of discriminating (6.9) for A, = 4from 
the normal (A, = 0) at four normal theory p,-obability levels. Samples of 100 

I Normal theory probability points Power for frequency (6.9) with A, =4 
Normal theory 


probability c = 4  c =  1 

(upper) (lower) c = 4  c =  1 


(1) (2) (3) (4) (5) 

0.01 4.3836 0.7482 0.0648 0.0695 
0.05 3.7744 0.7642 0.1995 0.1979 
0.10 3.5195 0.7725 0.3163 , 0.3037 
0.20 3.3110 0.7824 0.4525 0.4597 

I 

Before discussing the comparative powers in Table 9 it will be convenient to give a 
table, 11, on the same lines but for n = 500. On account of the larger sample size it has been 
necessary to change the reference-probabilities given in column (1). For the construction 
of this table Gram-Charlier formulae were used throughout the  probability points being 
determined from the E. A. Cornish & R. A. Fisher (1937) formulae-after verifying that 
for two of the probability levels, 0.01 and 0.05, the probability points for c = 4 (column (2) 
above) did not differ appreciably from those given by E. S. Pearson, namely, 3.60 and 3.37 
(for a(4)), based on a Type IV  curve. 

The analysis in $ 5  has enabled us to come fairly firmly to the conclusion that for indefinitely 
large samples a(4) was to be preferred to a(1) as & test of normality. We see from Tables 9 
and 10 that this is subject to an important qualification. Table 9 shows that the discrim- 
inating power is definitely greater for samples of 500 for a(4) than for a(l) ,  but the superiority 
is less emphatic than might have been anticipated from $5. For medium-sized samples 
(Table 9) a(4) exhibits no superiority. Of course, these conclusions are very tentative, 
as being based upon a single alternative and on particular sample sizes. The writer had 
proposed, in addition, to examine the universes (i) A, = 0, A, = 1 and (ii) A: = A, = 4 as 
alternatives to the normal but time did not permit; he ventures to repeat the hope that other 
students will take the matter up. 



Table 10. Power of a,(c)for c = 4 and c = 1 of discriminating (6.9)for A, = 4 
from the normal (A, = 0)at four probability levels. Samples of 500 

Normal probability points Power for, frequency (6.9) with A, = 

Normal 
probability c=4 c= 1 

(upper) (lower) c=4 c= 1 

(1) (2) (3) (4) (5) 

0.005 3.7062 0.773167 0.1934 0.2067 
0.01 3.6094 0.775684 0.2920 0.2790 
0.05 3.3766 0.782482 0.5955 0.5196 
0.10 3.2695 0.786058 0.7382 0.6509 

I n  $ 2  of the present paper i t  is shown that the actual probability of differences between 
means and variances derived from random samples on t h e  nul-hypothesis may differ 
considerably from the probability derived from the standard tables (compiled on the 
assumption that the universal distribution is normal), when, in fact, the universal distribu- 
tion is not normal. Accordingly, the standard tables cannot validly be used unless tests, 
based on the sample from which the inferences are to be drawn, or on a series of samples 
produced under similar conditions, have established the likelihood that the universal 
distribution is approximately normal. I n  certain cases-but these must be  few-the nature 
of the material may, of itself, suffice to justify the assumption of universal normality. 
When universal normality cannot be assumed, the best course will be to correct the standard 
tables using, for this purpose, the moments (up to, say, the fourth) derived from the sample, 
in conjunction with the formulae givenin$ 2. This procedureis, of course, open to the objection 
that the moments derived from the sample may, in fact, differ substantially from the (in 
general unknown) universal moments, so that any probabilistic inference derived using 
sample moments must be accepted with reserve. If b, = 3.5, say, it would be safer to assume 
that the universal value p, is 3.5, than to hope (without other evidence) that it is 3, the 
normal value; it might be 3.75 or even 4, when, usually, the standard table probabilities 
will be still further astray. It should not be difficult to construct supplementary tables 
giving very approximate corrections of the standard tables, using the moment expansions 
given in $2, for different values of 4,and /I,.To compute unbiassed estimates of the latter, 
R. A. Fisher's k statistics (1929) should, of course, be used. 

It may be asked if testing for normality and, when necessary, correction for universal 
non-normality is worth the trouble. To answer this question it is desirable to have regard to 
the logical position of the statistician, concerned with drawing inferences from samples, 
whose characteristic approach may be defined as reductio ad paene absurdum: if an event is 
highly improbable it must be regarded for practical purposes as impossible. St Thomas 
Aquinas's* famous 'certitude of probability' is peculiarly apt as applied to the mental 
attitude of the statistician, from two quite different viewpoints. The first is that decision, 
and action based on that decision, for which there is not certainty, but merely probabilistic 
preference, is absolute. One does not say that one has a preference of 20 to 1 for Fertilizer A 

* 'According to the Philosopher, certitude is not to be sought equally in every matter.. . .Hence 
the certitude of probability suffices, such asmay reach the truth in the greater number of cases, although 
it fails in the minority' (Summa 11 a-11 ae q. lxx, a. 2). 
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over Fertilizer B because the differences between the yields is a t  or near the 5 % probability 
point of some test functions: one necessarily decides without qualification that A is better 
than B. 

The second aspect, which has the greater relevance in the present case, is that the statis- 
tician regards himself as endowed with 'certitude' when he knows that if he repeated an 
experiment, as to, say, significant differences in averages, a great number of times, he would 
be in error in attributing significant difference when, in fact,-there was none, in a predeter- 
mined proportion of cases. He has certitude as to the probability though his decision in the 
individual case may be wrong. What is curious is that decisions (which, in effect, are absolute) 
can be based on probability levels which vary with the temperament of the statistician from 
perhaps a conservative 0.001 to a daring 0.1. For the particular statistician the probability 
level will vary with the case: for instance, the present writer would be inclined to suspect 
non-normality near the 10 % probability level of the a(1) table, whereas he would not be 
disposed to attach significance in, say, analysis of variance, until about the 24 % level. 
Naturally the level will depend on the importance attaching to the decision. 

Since all the statistician usually requires from the table of probability for a given measure 
of significance is whether, on the nul-hypothesis, the probability is 'small', absolute 
precision is not necessary in the probability. If the probability is thought to be minute, say 
0.001, it does not matter if in actual fact it is 0.002 or 0.0005. If, on the contrary, the standard 
table value is approaching the statistician's level of decision i t  surely matters a great deal: 
if he thinks his judgment is likely to be erroneous in 1 out of 20 experiments i t  must be of 
importance if, in fact, the true probability is something like 1 in 10 or 1. in 5. These are the 
kinds of contrasts that appear from $2, from comparison of standard table probabilities 
with 'actual' probabilities found when the samples were assumed to be randomly drawn 
from certain arbitrarily selected types of non-normal universes. The computed probabilities 
in $2 admittedly make no claim to exactitude in most of the cases, since the formulae were 
strained by their application to small sample theory. The point is, however, that the estimates 
of the actual probabilities are unbiassed in regard to the 'normal theory' probabilities: 
if the former could be closer to the latter, they might also be further away. 

There is one case which is in a quite exceptional category, namely that considered a t  the 
beginning of $ 2. As far as the writer is aware, this case has never been examined theoretically 
before, despite the extreme simplicit'y of the algebra. It is shown that in the simplest case 
of analysis of variance, when the two sample numbers are of the same order of magnitude, 
the variance is proportional, approximately, to (P, - 1), so that quite a small measure of 
universal kurtosis materially changes the probability. Statisticians must have been affected 
by a kind of hypnosis in favour of normal theory to have overlooked so trivial a point, 
a stricture from which the writer is not particularly concerned to exclude himself! An 
exception was E. S. Pearson (1931) who, on the basis of his results cited in $2  (a),sounded 
a warning: 'The illustration should serve to emphasize the fact that certain of the "normal 
theory" tests can be used with greater confidence than others when dealing with samples 
from populations whose distribution laws are not known.' 

An interesting chapter could be written on the fluctuations in the attitude of statisticians 
&iring the past century on the question of the occurrence of the normal frequency distribu- 
tion in nature, a chapter, perhaps, in a large work on Fashions in the Sciences down the Ages. 
Amongst the following the historian may find the reasons for the prejudice in favour of the 
hypothesis of universal normality up to, say, the end of the last century: 



(1) The fact that, to a close approximation, it applies in a wide range of mathematical 
conditions. 

(2) The fact that the theory found practical applications predominantly in assessing the 
probability of errors in astronomical meaf irements and in games of chance where the 
mathematical model could reasonably be assumed to apply. 

(3) The beauty of the mathematical theory and the facility of algebraic manipulation in 
the function involved. 

(4) The general shape to the visual sense of such frequency distributions as were known, 
before x2 imposed its discipline. 

With the development, about the beginning of the ,century, of the theory of moments, 
statisticians became almost over-conscioux of universal non-normality. The concomitant 
semi-invariant approach had quite a different background. The difference between the 
moment and Karl Pearson curve system on the one hand and semi-invariants and the Gram- 
Charlier system on the other is fundamentally that for the former normality is a particular 
case like any other, whereas for the latter normality is basic and generative. Each system 
has its advantages and disadvantages as applied to the determination of frequency dis- 
tributions of which the lower moments are known. In fanciful terms one might say that in 
the ship Gram-Cha-ier one might sail in perfect safety but -only within limited, and more 
or less ascertainable, range of Port Normslity, whereas in the good craft Pearson one can 
sail the seven seas-at one's own risk.* 

Our historian will findasignificant change of attitude about a quarter-century ago following 
on the brilliant work of R. A. Pisl.er who showed that, when universal normality could be 
assumed, inferences of the widest practical usefulness could be drawn from samples of any 
size. Prejudice in favour of normality returned in full force and interest in non-normality 
receded to the background (though one of the finest contributions to non-normal theory 
was inade during the period by R. A. Fisher hmself), and the importance of the underlying 
assumptions was almost forgotten. Even the few workers in the field (amongst them the 
present writer) seemed concerned to show that 'universal non-normality doesn't matter': 
we so wanted to find the theory as good as it was beautiful. References (when there were 
any a t  011) in the text-books to the basic assumptions were perfunctory in the extreme. 
Amends might be made in the interest of the new generation of students by printing in 
leaded type in future editions of existing text-books and in all new text-books: 

NormaEity is a myth; there never was, and never will be, a n m l  distribution. 

This is an over-statement from the practical point of view, but it represents a safer initial 
ma*ltal attitude than any in fashion during the past two decades. 

Ab already indicated, the present work is incomplete, especially on the experimental side. 
The writer hopes that he has created a prima facie case f ~ r  the importance of testing for 
normality. 

SUMMARY 
(i) Inferences drawn from the standard (normal) tables of z and t may be seriously in 

error if the conditions in which the standard tables apply (the principal of which is that the 
universes from which the samples are drawn are normal) are ignored. 

* This comment must not be taken as applying to the problem of curve-fitting, i.e. to fitting a smooth 
curve to given frequencies, but to the problem of estimating the frequency function given the first 
few semi-invariants. 
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(ii) Sufficient conditions are given for the approach to normality, with increasing sample 
size, of the field of tests of normality a(c) (given by (3.1)) for c > 0. 

(iii) Many term expansions of the first four moments of a(c) for normal samples are given 
with practical applications designed to find the values of c for which the moments could 
be used with confidence to find the frequency distributions for medium-size samples; semi- 
invariants of a1(2.4) and a1(4) (a,(c) is given by (3.2)) are compared; correlations between 
al(c) and a1(c1) are examined. 

(iv) For indefinitely large samples and a wide field of alternative universes a(4) is found 
to be the most sensitive test of kurtosis and an analogous test of asymmetry g(c) is found to 
be most sensitive for c = 3, g(3) being the familiar Jb,. 

(v) An examination of the relative efficiency of a(1) and a(4) from the Power Function 
point of view suggests that a(4) is increasingly to be preferred as the sample size increases; 
for samples of moderate size a(1) is probably as efficient as 44) .  

(vi) Throughout the paper a considerable range of formulae is given in case students may 
feel interested to carry the writer's researches a stage further so as to give a firmer basis to 
his conclusions or to modify them. It is suggested (5  4) that the preparation of a table of 
probability points of 42.2) for normal samples of different sizes be taken in hand. 
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