1.5 - 1.8 Homework Problems

(5.1) Use properties of conjugates and moduli to show the equality

- $(1a) \overline{\overline{z}+3i} = \overline{\overline{z}} + \overline{3i} = z 3i$
- (1b) $\overline{iz} = \overline{iz} = -i\overline{z}$ $(1c) (2+i)^2 = (2+i)(2+i) = (2+i) (2+i) = (2-i)(2-i) = 4-1-2i-2i = 3-4i$
- (5.2) Sketch the set of points determined by Re $(\bar{z} i) = 2$.

First, let's write $\bar{z} - i$ in terms of x and y.

$$
\bar{z} - i = \overline{x + iy} - i = x - iy - i = x + i(-y - 1)
$$

So $re(\overline{z} - i) = x$. The set of points we need to draw is a vertical line at $x = 2$.

(5.3) Verify the two properties of complex conjugates

$$
\overline{z_1 z_2} = \overline{z_1} \overline{z_2}, \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}
$$

If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then

$$
\overline{z_1 z_2} = (x_1 x_2 - y_1 y_2) - i(x_1 y_2 + x_2 y_1)
$$

= $(x_1 x_2 - (-y_1)(-y_2)) + i(x_1(-y_2) + x_2(-y_1))$
= $(x_1 - iy_1)(x_2 - iy_2) = \overline{z_1} \overline{z_2}$

$$
\frac{\overline{z_1}}{z_2} = \frac{\overline{x_1 + iy_1}}{x_2 + iy_2}
$$
\n
$$
= \frac{\overline{x_1 + iy_1} \overline{x_2 - iy_2}}{\overline{x_2 + iy_2} \overline{x_2 - iy_2}}
$$
\n
$$
= \frac{\overline{x_1 x_2 + y_1 y_2 + iy_1 x_2 - ix_1 y_2}}{x_2^2 + y_2^2}
$$
\n
$$
= \frac{\overline{x_1 x_2 - y_1 y_2 - iy_1 x_2 + ix_1 y_2}}{x_2^2 + y_2^2}
$$
\n
$$
\frac{\overline{z_1}}{\overline{z_2}} = \frac{\overline{x_1 - iy_1}}{\overline{x_2 - iy_2}} \overline{x_2 + iy_2}
$$
\n
$$
= \frac{\overline{x_1 - iy_1} \overline{x_2 + iy_2}}{\overline{x_2 - iy_2} \overline{x_2 + iy_2}}
$$
\n
$$
= \frac{\overline{x_1 x_2 + y_1 y_2 - iy_1 x_2 + ix_1 y_2}}{\overline{x_2^2 + y_2^2}} = \frac{\overline{z_1}}{z_2}
$$

 (5.7) Show that $|\text{Re}(2 + \bar{z} + z^3)| \leq 4$ when $|z| \leq 1$.

Since $|\text{Re } z| \leq |z|$ for every z, we know that

$$
|\text{Re}(2 + \bar{z} + z^3)| \le |2 + \bar{z} + z^3|
$$

Then apply the Triangle Inequality twice to put the modulus on the separate terms.

$$
|2 + \bar{z} + z^3| \le |2| + |\bar{z}| + |z^3|
$$

Since $|\bar{z}| = |z|$ and $|z^3| = |z|^3$,

$$
|2| + |\bar{z}| + |z^3| = 2 + |z| + |z|^3
$$

Now plug in $|z| \leq 1$

 $2+|z|+|z|^3 \leq 2+1+1^3=4$

Together these inequalities give the desired inequality.

(5.9) Show that if z lies on the circle $|z| = 2$, then

$$
\left| \frac{1}{z^4 - 4z^2 + 3} \right| \le \frac{1}{3}
$$

$$
|z^4 - 4z^2 + 3| = |(z^2 - 3)(z^2 - 1)|
$$

\n
$$
= |z^2 - 3||z^2 - 1|
$$

\n
$$
\geq ||z^2| - |3|| ||z^2| - |1||
$$
 backwards Tri. Ineq. on both
\n
$$
= ||z|^2 - 3||z|^2 - 1|
$$

\n
$$
= |2^2 - 3||2^2 - 1|
$$

\n
$$
= |4 - 3||4 - 1|
$$

\n
$$
= 3
$$

So $|z^4 - 4z^2 + 3| \ge 3$. By taking reciprocals (which reverses the inequality) we get the desired inequality.

(5.10a) Prove that z is real if and only if $\bar{z} = z$.

 (\Rightarrow) Assume z is real. Then $z = x + i0 = x$ and $\overline{z} = x - i0 = x$. So $\overline{z} = z$.

(←) Assume $\bar{z} = z$. Then $x + iy = x - iy$, which is only true if $x = x$ and $y = -y$. $y = -y$ means $2y = 0$ hence $y = 0$, so z is real.

(2a)
$$
|e^{i\theta}| = |\cos \theta + i \sin \theta| = \cos^2 \theta + \sin^2 \theta = 1
$$

(2b) $\overline{e^{i\theta}} = \overline{\cos \theta + i \sin \theta} = \cos \theta - i \sin \theta = \cos(-\theta) + i \sin(-\theta) = e^{-i\theta}$

(8.4) Using the fact that $|e^{i\theta} - 1|$ gives the distance between $e^{i\theta}$ and 1, give a geometric argument to find a value of θ in the interval $0 \leq \theta < 2\pi$ that satisfies the equation $|e^{i\theta}-1|=2$.

We know that $|e^{i\theta} - 1|$ gives the distance between $e^{i\theta}$ and 1. We also know that $e^{i\theta}$ always lies on the unit circle. The only point on the unit circle which is a distance 2 from 1 is −1. If $e^{i\theta} = -1$ and $0 \le \theta < 2\pi$, then $\theta = \pi$.

(8.5a) Show the following equality by switching to exponential form.

$$
i(1 - \sqrt{3}i)(\sqrt{3} + i) = 2(1 + i\sqrt{3})
$$

$$
i(1 - \sqrt{3}i)(\sqrt{3} + i) = e^{\frac{i\pi}{2}} (2e^{-\frac{i\pi}{3}})(2e^{\frac{i\pi}{6}})
$$

= $4e^{i(\frac{3\pi}{6} - \frac{2\pi}{6} + \frac{\pi}{6})}$
= $4e^{\frac{i2\pi}{6}}$
= $4(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})$
= $2(1 + i\sqrt{3})$

(8.5b) Show the following equality by switching to exponential form.

$$
(-1+i)^7 = 8(-1-i)
$$

$$
(-1+i)^7 = (\sqrt{2}e^{\frac{i3\pi}{4}})^7
$$

= $2^{\frac{7}{2}}e^{\frac{i21\pi}{4}}$
= $2^3 2^{\frac{1}{2}}e^{i4\pi}e^{\frac{i5\pi}{4}}$
= $8(\sqrt{2})(1)(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4})$
= $8(-1-i)$

(8.6) Show that if $\text{Re } z_1 > 0$ and $\text{Re } z_2 > 0$, then $\text{Arg } z_1 z_2 = \text{Arg } z_1 + \text{Arg } z_2$ (remember $\text{Arg } z_2$) refers to the principal argument).

Assume Re $z_1 > 0$ and Re $z_2 > 0$. Both are in the right half of the plane, so $-\frac{\pi}{2}$ < Arg $z_1 < \frac{\pi}{2}$ $\frac{\pi}{2}$ and $-\frac{\pi}{2}$ < Arg z_2 < $\frac{\pi}{2}$ $\frac{\pi}{2}$. We know that when we multiply z_1z_2 , we add the arguments. Normally, we wouldn't know that $\text{Arg } z_1 + \text{Arg } z_2$ is the principal argument Arg z_1z_2 , since the sum might not be between $-\pi$ and π . However, with the right half plane assumption both Arg z_1 and Arg z_2 are less than $\frac{\pi}{2}$ so their sum is less than π , and both are bigger than $-\frac{\pi}{2}$ $\frac{\pi}{2}$ so their sum is bigger than π . Therefore Arg $z_1z_2 = \text{Arg } z_1 + \text{Arg } z_2$.

(8.10) Use de Moivre's formula to derive the triple angle formulas.

$$
\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta, \qquad \sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta
$$

Plug $n = 3$ into deMoivre's formula. Use the real parts for $(10a)$ and the imaginary parts for (10b)

$$
(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta
$$

\n
$$
(\cos \theta + i \sin \theta)^3 = \cos 3\theta + i \sin 3\theta
$$

\n
$$
\cos^3 \theta + 3i \cos^2 \theta \sin \theta + 3i^2 \cos \theta \sin^2 \theta + i^3 \sin^3 \theta = \cos 3\theta + i \sin 3\theta
$$

\n
$$
\cos^3 \theta - 3 \cos \theta \sin^2 \theta + i(3 \cos^2 \theta \sin \theta - \sin^3 \theta) = \cos 3\theta + i \sin 3\theta
$$

\n
$$
\cos^3 \theta - 3 \cos \theta \sin^2 \theta = \cos 3\theta \quad AND \quad 3 \cos^2 \theta \sin \theta - \sin^3 \theta = \sin 3\theta
$$