
1.5 - 1.8 Homework Problems

(5.1) Use properties of conjugates and moduli to show the equality
(1a) z̄ + 3i = ¯̄z + 3i = z − 3i

(1b) iz = īz̄ = −iz̄
(1c) (2 + i)2 = (2 + i)(2 + i) = (2 + i) (2 + i) = (2− i)(2− i) = 4− 1− 2i− 2i = 3− 4i

(5.2) Sketch the set of points determined by Re (z̄ − i) = 2.

First, let’s write z̄ − i in terms of x and y.

z̄ − i = x+ iy − i = x− iy − i = x+ i(−y − 1)

So re(z̄ − i) = x. The set of points we need to draw is a vertical line at x = 2.

(5.3) Verify the two properties of complex conjugates

z1z2 = z̄1z̄2,

(
z1
z2

)
=
z̄1
z̄2

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1z2 = (x1x2 − y1y2)− i(x1y2 + x2y1)

= (x1x2 − (−y1)(−y2)) + i(x1(−y2) + x2(−y1))
= (x1 − iy1)(x2 − iy2) = z̄1z̄2

z1
z2

=
x1 + iy1
x2 + iy2

=
x1 + iy1
x2 + iy2

x2 − iy2
x2 − iy2

=
x1x2 + y1y2 + iy1x2 − ix1y2

x22 + y22

=
x1x2 − y1y2 − iy1x2 + ix1y2

x22 + y22
z̄1
z̄2

=
x1 − iy1
x2 − iy2

=
x1 − iy1
x2 − iy2

x2 + iy2
x2 + iy2

=
x1x2 + y1y2 − iy1x2 + ix1y2

x22 + y22
=
z1
z2

(5.7) Show that |Re (2 + z̄ + z3)| ≤ 4 when |z| ≤ 1.
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Since |Re z| ≤ |z| for every z, we know that

|Re (2 + z̄ + z3)| ≤ |2 + z̄ + z3|

Then apply the Triangle Inequality twice to put the modulus on the separate terms.

|2 + z̄ + z3| ≤ |2|+ |z̄|+ |z3|

Since |z̄| = |z| and |z3| = |z|3,

|2|+ |z̄|+ |z3| = 2 + |z|+ |z|3

Now plug in |z| ≤ 1
2 + |z|+ |z|3 ≤ 2 + 1 + 13 = 4

Together these inequalities give the desired inequality.

(5.9) Show that if z lies on the circle |z| = 2, then∣∣∣∣ 1

z4 − 4z2 + 3

∣∣∣∣ ≤ 1

3

|z4 − 4z2 + 3| = |(z2 − 3)(z2 − 1)|
= |z2 − 3||z2 − 1|
≥

∣∣|z2| − |3|∣∣ ∣∣|z2| − |1|∣∣ backwards Tri. Ineq. on both

=
∣∣|z|2 − 3

∣∣ ∣∣|z|2 − 1
∣∣

= |22 − 3||22 − 1|
= |4− 3||4− 1|
= 3

So |z4−4z2+3| ≥ 3. By taking reciprocals (which reverses the inequality) we get the desired
inequality.

(5.10a) Prove that z is real if and only if z̄ = z.

(⇒) Assume z is real. Then z = x+ i0 = x and z̄ = x− i0 = x. So z̄ = z.

(⇐) Assume z̄ = z. Then x + iy = x − iy, which is only true if x = x and y = −y.
y = −y means 2y = 0 hence y = 0, so z is real.

(2a) |eiθ| = | cos θ + i sin θ| = cos2 θ + sin2 θ = 1

(2b) eiθ = cos θ + i sin θ = cos θ − i sin θ = cos(−θ) + i sin(−θ) = e−iθ

(8.4) Using the fact that |eiθ − 1| gives the distance between eiθ and 1, give a geometric
argument to find a value of θ in the interval 0 ≤ θ < 2π that satisfies the equation |eiθ−1| = 2.
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We know that |eiθ − 1| gives the distance between eiθ and 1. We also know that eiθ always
lies on the unit circle. The only point on the unit circle which is a distance 2 from 1 is −1.
If eiθ = −1 and 0 ≤ θ < 2π, then θ = π.

(8.5a) Show the following equality by switching to exponential form.

i(1−
√

3i)(
√

3 + i) = 2(1 + i
√

3)

i(1−
√

3i)(
√

3 + i) = e
iπ
2 (2e−

iπ
3 )(2e

iπ
6 )

= 4ei(
3π
6
− 2π

6
+π

6
)

= 4e
i2π
6

= 4(cos
π

3
+ i sin

π

3
)

= 2(1 + i
√

3)

(8.5b) Show the following equality by switching to exponential form.

(−1 + i)7 = 8(−1− i)

(−1 + i)7 = (
√

2e
i3π
4 )7

= 2
7
2 e

i21π
4

= 232
1
2 ei4πe

i5π
4

= 8(
√

2)(1)(cos
5π

4
+ i sin

5π

4
)

= 8(−1− i)

(8.6) Show that if Re z1 > 0 and Re z2 > 0, then Arg z1z2 = Arg z1 + Arg z2 (remember Arg
refers to the principal argument).

Assume Re z1 > 0 and Re z2 > 0. Both are in the right half of the plane, so −π
2
<

Arg z1 < π
2

and −π
2
< Arg z2 < π

2
. We know that when we multiply z1z2, we add the

arguments. Normally, we wouldn’t know that Arg z1 + Arg z2 is the principal argument
Arg z1z2, since the sum might not be between −π and π. However, with the right half plane
assumption both Arg z1 and Arg z2 are less than π

2
so their sum is less than π, and both are

bigger than −π
2

so their sum is bigger than π. Therefore Arg z1z2 = Arg z1 + Arg z2.

(8.10) Use de Moivre’s formula to derive the triple angle formulas.

cos 3θ = cos3 θ − 3 cos θ sin2 θ, sin 3θ = 3 cos2 θ sin θ − sin3 θ
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Plug n = 3 into deMoivre’s formula. Use the real parts for (10a) and the imaginary parts
for (10b)

(cos θ + i sin θ)n = cosnθ + i sinnθ

(cos θ + i sin θ)3 = cos 3θ + i sin 3θ

cos3 θ + 3i cos2 θ sin θ + 3i2 cos θ sin2 θ + i3 sin3 θ = cos 3θ + i sin 3θ

cos3 θ − 3 cos θ sin2 θ + i(3 cos2 θ sin θ − sin3 θ) = cos 3θ + i sin 3θ

cos3 θ − 3 cos θ sin2 θ = cos 3θ AND 3 cos2 θ sin θ − sin3 θ = sin 3θ
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