Section 20 Solutions

(20.8a) Show that \(f(z) = \text{Re} z \) is not differentiable for any \(z \) by showing the limit in the definition of the derivative doesn’t exist.

\[
\begin{align*}
f'(z) &= \lim_{\Delta z \to 0} \frac{\text{Re}(z + \Delta z) - \text{Re} z}{\Delta z} \\
&= \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{x + \Delta x - x}{\Delta z + i\Delta y} \\
&= \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta x}{\Delta z + i\Delta y}
\end{align*}
\]

If we let \(\Delta z \) go to 0 along the line \((\Delta x,0)\), the limit is 1. Along the line \((0,\Delta y)\), the limit is 0. Since the answers are different, the limit does not exist and \(f \) is not differentiable.

(23.1b) Using the Cauchy-Riemann equations, show that \(f(z) = z - \bar{z} \) is not differentiable for any \(z \).

\[
\begin{align*}
f(z) &= z - \bar{z} = x + iy - (x - iy) = 2iy, \text{ so } u(x, y) = 0 \text{ and } v(x, y) = 2y. \\
u_x &= 0 \\
u_y &= 0 \\
v_x &= 0 \\
v_y &= 2
\end{align*}
\]

\(v_x = -u_y = 0 \) but \(u_x \neq v_y \) ever. \(f'(z) \) does not exist.

(23.1d) Using the Cauchy-Riemann equations, show that \(f(x + iy) = e^x e^{-iy} \) is not differentiable for any \(z \).

\[
\begin{align*}
f(z) &= e^x e^{-iy} = e^x \cos(-y) + i e^x \sin(-y) = e^x \cos y - i e^x \sin y, \text{ so } u(x, y) = e^x \cos y \text{ and } v(x, y) = -e^x \sin y. \\
u_x &= e^x \cos y \\
u_y &= -e^x \sin y \\
v_x &= -e^x \sin y \\
v_y &= -e^x \cos y
\end{align*}
\]

\(v_x \neq -u_y \) unless \(\sin y = 0 \) and \(u_x \neq v_y \) unless \(\cos y = 0 \). Since \(\sin y \) and \(\cos y \) cannot both be 0 at the same time, \(f'(z) \) does not ever exist.

(23.3a) Suppose \(f(z) = \frac{1}{z} \). Using the Cauchy-Riemann equations, determine where \(f'(z) \) exists and give its value for the \(z \) when it does exist.

\[
\begin{align*}
f(z) &= \frac{1}{z} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}, \text{ so } u(x, y) = -\frac{x}{x^2 + y^2} \text{ and } v(x, y) = -\frac{y}{x^2 + y^2}.
\end{align*}
\]

\[
\begin{align*}
u_x &= \frac{(1)(x^2 + y^2) - (x)(2x)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \\
u_y &= \frac{(0)(x^2 + y^2) - (x)(2y)}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}
\end{align*}
\]
\[v_x = \frac{(0)(x^2 + y^2) - (-y)(2x)}{(x^2 + y^2)^2} = \frac{2xy}{(x^2 + y^2)^2} \]

\[v_y = \frac{(-1)(x^2 + y^2) - (-y)(2y)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \]

The CR equations are satisfied and the partials are continuous if \(z \neq 0 \), so \(f'(z) = u_x + iv_x = \frac{y^2 - x^2}{(x^2 + y^2)^2} + i \frac{2xy}{(x^2 + y^2)^2} = \frac{(x - iy)(x - iy)}{(z \bar{z})^2} = \frac{x^2}{z \bar{z}^2} = \frac{1}{z^2} \).

(23.3b) Suppose \(f(x + iy) = x^2 + iy^2 \). Using the Cauchy-Riemann equations, determine where \(f'(z) \) exists and give its value for the \(z \) when it does exist.

\[f(z) = x^2 + iy^2 \] so \(u(x, y) = x^2 \) and \(v(x, y) = y^2 \).

\[
\begin{align*}
 u_x &= 2x \\
 u_y &= 0 \\
 v_x &= 0 \\
 v_y &= 2y
\end{align*}
\]

The CR equations are only satisfied if \(x = y \). When \(x = y \), \(f'(z) = 2x \).