Section 20 Solutions

(20.8a) Show that $f(z) = \text{Re } z$ is not differentiable for any z by showing the limit in the definition of the derivative doesn't exist.

$$
f'(z) = \lim_{\Delta z \to 0} \frac{\operatorname{Re}(z + \Delta z) - \operatorname{Re} z}{\Delta z}
$$

=
$$
\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{x + \Delta x - x}{\Delta x + i \Delta y}
$$

=
$$
\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta x}{\Delta x + i \Delta y}
$$

If we let Δz go to 0 along the line $(\Delta x, 0)$, the limit is 1. Along the line $(0, \Delta y)$, the limit is 0. Since the answers are different, the limit does not exist and f is not differentiable.

(23.1b) Using the Cauchy-Riemann equations, show that $f(z) = z - \overline{z}$ is not differentiable for any z.

$$
f(z) = z - \overline{z} = x + iy - (x - iy) = 2iy
$$
, so $u(x, y) = 0$ and $v(x, y) = 2y$.

$$
u_x = 0
$$

\n
$$
u_y = 0
$$

\n
$$
v_x = 0
$$

\n
$$
v_y = 2
$$

 $v_x = -u_y = 0$ but $u_x \neq v_y$ ever. $f'(z)$ does not exist.

(23.1d) Using the Cauchy-Riemann equations, show that $f(x+iy) = e^x e^{-iy}$ is not differentiable for any z.

 $f(z) = e^x e^{-iy} = e^x \cos(-y) + ie^x \sin(-y) = e^x \cos y - ie^x \sin y$, so $u(x, y) = e^x \cos y$ and $v(x, y) = -e^x \sin y.$

$$
u_x = e^x \cos y
$$

\n
$$
u_y = -e^x \sin y
$$

\n
$$
v_x = -e^x \sin y
$$

\n
$$
v_y = -e^x \cos y
$$

 $v_x \neq -u_y$ unless sin $y = 0$ and $u_x \neq v_y$ unless cos $y = 0$. Since sin y and cos y cannot both be 0 at the same time, $f'(z)$ does not ever exist.

(23.3a) Suppose $f(z) = \frac{1}{z}$. Using the Cauchy-Riemann equations, determine where $f'(z)$ exists and give its value for the z when it does exist.

$$
f(z) = \frac{1}{z} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}, \text{ so } u(x, y) = \frac{x}{x^2 + y^2} \text{ and } v(x, y) = -\frac{y}{x^2 + y^2}.
$$

$$
u_x = \frac{(1)(x^2 + y^2) - (x)(2x)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}
$$

$$
u_y = \frac{(0)(x^2 + y^2) - (x)(2y)}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}
$$

$$
v_x = \frac{(0)(x^2 + y^2) - (-y)(2x)}{(x^2 + y^2)^2} = \frac{2xy}{(x^2 + y^2)^2}
$$

$$
v_y = \frac{(-1)(x^2 + y^2) - (-y)(2y)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}
$$

The CR equations are satisfied and the partials are continuous if $z \neq 0$, so $f'(z) = u_x + iv_x =$ y^2-x^2 $\frac{y^2-x^2}{(x^2+y^2)^2}+i\frac{2xy}{(x^2+y^2)}$ $\frac{2xy}{(x^2+y^2)^2} = \frac{-(x-iy)(x-iy)}{(z\bar{z})^2}$ $\frac{-iy)(x-iy)}{(z\bar{z})^2} = \frac{-\bar{z}^2}{z^2\bar{z}^2}$ $\frac{-\bar{z}^2}{z^2\bar{z}^2}=\frac{-1}{z^2}$ $\frac{-1}{z^2}$.

(23.3b) Suppose $f(x + iy) = x^2 + iy^2$. Using the Cauchy-Riemann equations, determine where $f'(z)$ exists and give its value for the z when it does exist. $f(z) = x^2 + iy^2$ so $u(x, y) = x^2$ and $v(x, y) = y^2$.

$$
u_x = 2x
$$

\n
$$
u_y = 0
$$

\n
$$
v_x = 0
$$

\n
$$
v_y = 2y
$$

The CR equations are only satisfied if $x = y$. When $x = y$, $f'(z) = 2x$.