
Solutions - Sections 30 and 31
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(10) First, check that u = ln(x2 + y2) satisfies Laplace’s equation.
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Since u satisfies Laplace’s equation and its second partials are continuous when z 6= 0, u is
harmonic when z 6= 0.

Now, note that u = ln(x2 + y2) = ln(|z|2) = ln(|z2|) is the real part of the logarithm
f(z) = log(z2) = ln(|z2|) + i(arg z2). The branches of log(z2) are analytic since they are
compositions of analytic functions. Since u is the real part of an analytic function, u is
harmonic off the branch cut. But since u is the same no matter which branch cut we use, u
is harmonic everywhere except z = 0 (which is on every branch cut).
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