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Solutions - Sections 30 and 31
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(10) First, check that u = In(z? + y?) satisfies Laplace’s equation.
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Since u satisfies Laplace’s equation and its second partials are continuous when z # 0, u is
harmonic when z # 0.

Now, note that v = In(z? + y?) = In(|z|*) = In(|2?]) is the real part of the logarithm
f(z) = log(2?) = In(]2?|) + i(arg 2%). The branches of log(z?) are analytic since they are
compositions of analytic functions. Since w is the real part of an analytic function, u is
harmonic off the branch cut. But since u is the same no matter which branch cut we use, u
is harmonic everywhere except z = 0 (which is on every branch cut).



