
MATH 430 COMPLEX ANALYSIS

TRISTAN PHILLIPS

These are notes from an introduction to complex analysis at the undergraduate
level as taught by Paul Taylor at Shippensburg University during the Fall 2016
semester. If you notice any errors of any kind (as I’m sure there are many) you can
email me at tp7924@ship.edu.
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1. Lecture 1: Arithmetic in Complex numbers
What was the motivation behind developing complex analysis?

• They are needed to solve polynomial equations.
� For example the equation x2 + x + 1 = 0 can’t be solved without

complex numbers.
� In reality most of the motivation came from solutions to cubic equa-

tions. (NOT quadratics!)

We can split complex numbers into real and imaginary parts. i =
√
−1 is the

unit ‘vector’ in the imaginary direction.
In general we have that if z = x+ iy then Re(z) = x and Im(z) = y.

Example 1.1. If z = 3 + 5i then Re(z) = 3 and Im(z) = 5.

We have all the standard properties we are accustom to; Commutativity (a+b =
b + a & ab = ba), Associative ((a + b) + c = a + (b + c) & (ab)c = c(ab)), and
Distributive (a(b+ c) = ab+ ac)).

Adding and subtracting in C is as expected. If z1 = x1 + iy1 and z2 = x2 + iy2
then z1 + z2 = (x1 + x2) + i(y1 + y2).

We also have a fairly logical definition of multiplication:

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(y1x2 + y2x1).

Example 1.2. Solve z2 + z + 1 = 0

Let z = x+ iy where x, y ∈ R. Then we have
z2 +z+1 = (x+iy)2 +(x+iy)+1 = (x2−y2 +x+1)+i(2xy+y) = 0+0i.
So, this means that x2 − y2 + x + 1 = 0 and 2xy + y = 0. Considering
2xy + y = 0 we see that it has solutions (x, 0) and (−1/2, 0). So we can
break this into these two cases:
Case 1: When we have a solution to 2xy+ y = 0 of the form (x, 0) then
our other equation (x2 − y2 + x+ 1 = 0) becomes x2 + x+ 1 = 0. But we
have that the roots of this equation are x = −1

2 ±
√
−3
2 , contradiction the

fact that x is real. Thus there are no solutions when y = 0.
Case 2: When we have a solution to 2xy + y = 0 of the form (−1/2, y)
then our equation (x2− y2 + x+ 1 = 0) becomes 3/4− y2 = 0. So solving
for y we get y = ±

√
3/2. This gives solutions of (−1/2,±

√
3/2) to our

original equation. Explicitly these solutions are:

z = −1
2 ± i

√
3

2 .

Theorem 1.3. If z1z2 = 0 then at least one of z1 or z2 is zero.
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Proof. Let z1 = x1 + iy1 and z2 = x2 + iy2. Now WLOG suppose z2 6= 0. Thus we
can divide by z2:

z1z2

z2
= 0
z1
.

And by our definition of division we have that z1 = 0 �

Elements of C can be thot of as two dimensional vectors with real and imaginary
components.

Example 1.4. The vectors corresponding to 1− 2i and 3 + 4i:

Definition 1.5. The magnitude (aka modulus or length) of z = x + iy,
denoted |z| is:

|z| :=
√
x2 + y2

We also have a notion of distance between z1 and z2.

Definition 1.6. The distance between z1 and z2 is defined as:
|z1 − z2| =

√
(x1 − x2)2 + (y1 − y2)2.

We have a nice equation for a circle in C centered at z0 with radius r:

|z − z0| = r.

The triangle inequality is
|z1 + z2| ≤ |z1|+ |z2|.

It can be easily derived geometrically:
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We can also rewrite the triangle inequality to obtain the backwards triangle
inequality:

|z1 − z2| ≥ ||z1| − |z2||.
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2. Lecture 2
We start off with an example problem:

Example 2.1. Assume z satisfies |z − 5| < 1. Find a bound for |z|.
We can answer this with the triangle inequality. By the reverse triangle

inequality
|z| = |(z − 5) + 5| ≤ |z − 5|+ |5|

And by the assumption |z − 5| < 1 we obtain an upper bound for |z|
z < 1 + 5 = 6.

For the lower bound we do a similar procedure using the reverse triangle
inequality,

|z| = |(z − 5)− (−5)| ≥ ||z − 5| − | − 5||.
Now by our assumption that |z − 5| < 1 we obtain the lower bound

|z| < |1− 5| = 4.
Altogether we have shown that 4 < |z| < 6.

We can also come to this conclusion by considering the the graph |z −
5| < 1:

This diagram makes the fact that 4 < |z| < 6 obvious.

We now give the definition of a complex conjugate.

Definition 2.2. We write the complex conjugate of z = x + iy as
z = x−iy. In essence the complex conjugate flips the sign of the imaginary
part of the complex number.

The complex conjugate can be thought of graphically as a reflection over the real
axis.



COMPLEX ANALYSIS 7

Some properties of conjugates:
zz = |z|2

z1z2 = z · z
z + z = 2Re(z)
z − z = 2Im(z)

These are all straightforward to show using the definition of a complex conjugate.
We have the following theorem which can be proven using complex conjugates:

Theorem 2.3. ∣∣∣∣z1

z2

∣∣∣∣ = |z1|
|z2|

.

Proof. ∣∣∣∣z1

z2

∣∣∣∣2 =
(
z1

z2

)(
z1

z2

)
=
(
z1

z2

)(
z1

z2

)
= z1z1

z2z2
= |z1|2

|z2|2
The result now follows by squaring each side. �

This theorem can be useful in many cases:

Example 2.4. If |z| = 2, then show
∣∣∣ 1
z2+6z+9

∣∣∣ ≤ 1.
To show this we first apply the above theorem:∣∣∣∣ 1

z2 + 6z + 9

∣∣∣∣ = |1|
|z2 + 6z + 9| .

Notice that z2 +6z+9 can be factored to (z+3)2. So in fact we are trying
to show that

1
|z + 3|2 ≤ 1
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which is equivalent to showing that |z + 3| ≥ 1. This follows from the
reverse triangle inequality

|z − (−3)| ≥ ||z| − | − 3|| = |2− 3| = 1.
This problem can also be worked out with a more geometric approach.

Since |z| = 2 we know z is some point lying on the circle of radius 2
centered at the origin.Following the algebraic argument given above, if we
can show that |z + 3| ≥ 1 we will be done. Notice that |z + 3| can be
interpreted as the distance between z and 3. So it is obvious from the
following diagram that |z + 3| ≥ 1:

Since we know we can think of complex numbers as vectors it is logical to be
able to use polar coordinates.

So, we have the following for z ∈ C
z = r cos(θ) + ir sin(θ)

= r(cos(θ) + i sin(θ))
= reiθ.
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Of course r = |z| is the radius from the origin and θ = tan(Im(z)/Re(z)) + 2nπ is
the angle from 1, also known as the argument. The principal argument is the
argument lying in the interval (−π, π] and is denoted Arg(z).

Example 2.5. Find the radius and argument for z = −1− i.
The radius is

r = | − 1− i| =
√

((−1)2 + (−1)2) =
√

2.
For the argument we use the graph:

to find that Arg(z) = −3π/4.

We note the following celebrated formula found by Euler (Euler’s formula):
eiθ = cos θ + i sin θ.

This will be especially useful for us in complex analysis since it gives a way of
switching to and from exponential form.

A notable instance of the above formula is when we let θ = π:
eiπ = −1⇒ eiθ + 1 = 0.

An example of an application of Euler’s formula is putting 1 + i
√

3 in to expo-
nential form:

1 + i
√

3 = 2(cos(π/3) + i sin(π/3)) = 2eπ/3.
A good way to think of the process of switching into exponential form is graphically
as we saw earlier.

All the same properties that we are used to for en still work for the complex
numbers.

Using Euler’s formula we can come up with a number of tricky trig identities.

Example 2.6. We can come up with the angle addition identities.
We will be doing this by looking at the product eiθ in two ways;

eiaeib = ei(a+b) = cos(a+ b) + i sin(a+ b)
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and
eiaeib = (cos(a) + i sin(a)) · (cos(b) + i sin(b))

= (cos(a) cos(b)− sin(a) sin(b)) + i(sin(a) cos(b) + cos(a) sin(b)).
If we set the real and imaginary parts of these two equivalent expressions
we get the angle addition formulas from trigonometry:

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)
and

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b).

Similarly we can derive the double angle formulas starting from (eiθ)2 = ei2θ.
In fact we have De Moivere’s formula:

Theorem 2.7.
(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ)

This formula can be easily derived using Euler’s formula. It is especially usefull in
find double-angle, triple-angle, ..., and arbitrary-angle formulas for trigonometry.
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3. Lecture 3: Roots & Regions
Roots
In exponential form the argument can take on multiple values. This begs the

following question:
When are 2 complex numbers equal in exponential form?

Say we have two complex numbers which are equal in exponential form:
r1e

iθ1 = r2e
iθ2 .

For these to be equal we must have r1 = r2 and θ1 ≡ θ2 mod 2π. For example
4ei2π/3 is equal to many (infinitely many) other numbers in exponential form with
different arguments:

4ei2π/3 = 4ei8π/3 = 4e−i4π/3 = · · · = 4ei(2π/3+2πn)

Lets get right into taking roots:

Example 3.1. Find the square root(s) of 4ei2π/3.
Notice that this is equivalent to solving

z2 = 4ei2π/3

for z. Intuitively from our notion of complex multiplication we would
expect the square root to take half the angle and the regular square root of
the magnitude. This intuition is accurate.

We have
(4ei2π/3)1/2 = 2eiπ/3.

Great, so this gives 2eiπ/3 as a square root of 4ei2π/3; but is this the
only one? Remember that complex numbers can take on many arguments.
Lets see what happens when we consider 4e−i4π/3 (which is equivalent to
4ei2π/3). Now taking the square root we have

(4ei−4π/3)1/2 = 2ei(−2π/3).

So, is 2e−i2π/3 a valid square root of 4ei2π/3; certainly 2e−i2π/3 6= 2eiπ/3.
The sort answer is yes, they are both square roots of 4ei2π/3. In fact we
can take the more general square root

(4ei(2π/3+2πk)1/2 = 2ei(π/3+πk).

From this we notice that depending on the parity of k we will get two
different square roots π radians from one another. These two square roots
are illustrated in the following diagram:
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One way to get rid of our root ambiguity is to use the principal argument (before
taking the root); we call the result the principal root. This root is always the root
nearest to 0.

An nth root of unity is an nth root of 1. For example:

Example 3.2. Find all cube roots of unity. (i.e. all solutions to z3 = 1).
We rewrite 1 as 1 = ei2πn for n ∈ Z. Now we take cube roots to solve

z3 = ei2πn:
(z3)1/3 = (ei2πn)1/3

z = e
i2πn

3 .

Now depending on our choice of n what we will get will be equivalent to
one of the following three cube roots of unity

1, e i2π3 , e
i4π

3 .

Graphing these we get
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Regions:
In R, we use intervals a lot.
• Ex. (2, 3)⇒ x ∈ (2 < x < 5)

Since C is two dimensional, intervals don’t work so well.
In analysis, intervals are useful as neighborhoods (numbers close to a center

number).

Example 3.3. Find the numbers within 0.1 of 2.
In R this is (1.9, 2.1).
In C this is |z − 2| < 0.1.
• A neighborhood (NBD) of 2 with r = 0.1.

As default we use ε (epsilon) to represent a small radius. Epsilon in real, small,
and positive.

Any two-dimensional shape can be thot of as a set of complex numbers.

Definition 3.4. The edge of S is called the boundary. More precisely,
a point z0 is a boundary point of S if every neighborhood of z0 contains
some points in S and some points not in S. We will denote the boundary
of S as ∂S.

Definition 3.5. The inside part of S is called the interior. More pre-
cisely, a point is an interior point of S if you can find a neighborhood of
the point which is completely contained in S.

In this diagram I is an interior point of the set S and B is a boundary point of
S.
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Example 3.6. Let S = z : |z| < 1. Prove that 0.9i is an interior point.

Proof. We want to choose an r such that the disk |z − 0.9i| < r is com-
pletely contained in S. For example this is satisfied if we choose any
r ≤ 0.1. For example a valid choice of r would be r = 0.05:

�

Example 3.7. Prove that −1 is a boundary point on S as it was defined
in the previous example.

Proof. Consider the following diagram

Focusing in on −1 we define the points −1 − ε/2 and −1 + ε/2. Notice
that these two new points are always in an the neighborhood of −1 with
radius ε. Also since |−1− ε/2| > 1 it follows that −1− ε/2 /∈ S. Similarly
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since | − 1 + ε/2| < 1 it follows that −1 + ε/2 ∈ S. This shows that −1 is
a boundary point.

�
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4. Lecture 4: Regions
More Regions:

Definition 4.1. A set is open if all its points are interior.

For example |z| < 1 is an open set.

Definition 4.2. A set is closed if it contains its boundary.

Note that some sets are neither open or closed. The only sets in C which are
open and closed (clopen) are C and ∅ (i.e. there are no nontrivial clopen sets).

Definition 4.3. The complement of a space S, denoted Sc, is the set
of all points not in S.

Note that the boundary of S is the same as the boundary of the complement of
S:

∂S = ∂Sc.

Also the compliment of the compliment of a space S is just S. In other-words
(Sc)c = S.

Theorem 4.4. S is closed ⇔ Sc is open.

Proof. Assume S is closed.
⇔ S contains ∂S ⇒ S contains ∂Sc.
⇔ Sc does not contain ∂Sc

⇔ All points in Sc are interior
⇔ Sc is open. �

Example 4.5. Show that S = {|z| < 6} is open.
We need to check that all points in S are interior points.

Proof. Let z0 be some point in S. So |z0| < 6. Letting d be the distance
from z0 to the nearest boundary we have that d = 6−|z0|. Thus it is easy
to see that the neighborhood

|z − z0| < d/2
is completely in S. (Notice that d/2 is halfway between z0 and the nearest
boundary point). Since z0 was arbitrary, all points in S are interior points
which means that S is open. �
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We will now do an example of showing a space it closed:

Example 4.6. Show S = {z : Re(z) ≤ 0} is closed.
The strategry will be to show Sc is open and then apply theorem 4.4.

Proof. Let z0 ∈ Sc, which means Re(z0) > 0. We define d to be d :=
Re(z0). We now use |z−z0| < d/2 as our neighborhood, which is contained
inSc. Since z0 was arbitrary all points in Sc are interior which implies
that Sc is open and so, by theorem 4.4, we have that S is closed. �

Theorem 4.7. The intersection of 2 open sets is open.

Proof. Let S and T be open sets.
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Case1: If S ∩ T = ∅, then S ∩ T is trivially open.
Case2: If S ∩ T 6= ∅, then let z0 ∈ S ∩ T . This means that z0 ∈ S and 0 ∈ T .

Since z0 is an interior point of S we know that there exists a neighborhood of z0,
namely |z − z0| < εS , which is contained is S. By the same logic we know that
there is a neighborhood of z0, namely |z − z0| < εT , which is contained in T .

Let ε = min{εS , εT }. Notice then that |z − z0| < ε is contained in both S and T
(i.e. in S ∩ T ). This means that z0 is an interior point of S ∩ T and since z0 was
arbitrary we have that S ∩ T is open. �

Theorem 4.8. The union of 2 closed sets is closed.



COMPLEX ANALYSIS 19

Proof. Let S and T be closed sets. To prove that S ∪ T is closed we will show that
(S ∪ T )c is open.

By theorem 4.4 Sc and T c are both open. So applying theorem 4.7 we see that
Sc ∩ T c is also open. Also we know that (S ∪ T )c = Sc ∩ T c, so (S ∪ T )c is open as
well. It follows from theorem 4.4 that S ∪ T is closed. �
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5. Lecture 5: Spaces, Functions, and Mappings

Definition 5.1. An open set is connected if every 2 points in the set can
be connected by a ‘polygonal’ line (i.e. a piecewise linear line) contained
completely in the set.

Definition 5.2. A domain is a set which is open, connected, and non-
empty.

Domains are nice because theorems from calculus usually carry over from R to
domains of C.

Definition 5.3. S is bounded if you can draw a circle around it. That
is, we can find some radius R such that S ⊂ {|z| : |z| < R}.

Definition 5.4. If S is not bounded then it is unbounded.

Examples 5.5. Define the following three spaces:
S1 := |z − (i− 1)| < 5

S2 :=
{
n+ i

n

}∞
n=1

=
{

1 + i

1 ,
2 + i

2 ,
3 + i

3 , ...

}
S3 := R = The real line.
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Notice S1 is contained in the origin centered open disk with radius 6,
thus S1 is bounded.

For S2 we see that it is entirely contained in the origin centered open
disk with radius 1.5, therefore it is bounded.

Since S3 is the real line it is impossible to draw a disk which completely
contains it. Therefore S3 in unbounded.

Definition 5.6. z0 is an accumulation point of S if every neighborhood
of z0 contains infinitely many points of S.
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We give an alternate definition of closed:

Definition 5.7. S is closed if it contains all of its accumulation points.

Functions:
A function f of z can be written z → f(z). One thing that we liked to do with

real valued functions was to graph them in order to visualize the function and gain
intuition. Unfortunately since our functions are from C (a 2-dimensional space) to
C (a 2-dimensional space), we would need 4-dimensions to properly visualize these
function (which is not possible). Despite this however, there are some things we
can still do to get an intuition of what the function is doing.

Example 5.8. Consider the function f(x) = z2.
We can split this function into two real valued functions (one for the

real part and one for the imaginary part):
f(x+ iy) = (x+ iy)2

= (x2 − y2) + i(2xy).

Thus we have split f(z) into the two real valued functions u(x, y) = x2−y2

and v(x, y) = 2xy. In particular notice
f(z) = f(x+ iy) = u(x, y) + i · v(x, y).

In C polynomials are defined as expected:

Definition 5.9. A polynomial with degree n is
anz

n + an−1z
n−1 + · · ·+ a1z + a0

for ak ∈ C.

Mapping:
Mappings helps us to think of complex functions as moving points. We will

illustrate this with several examples. In each of these examples we will take a
function and see how it maps the ‘smiley-face’ set centered at 2 + i. This ‘smiley-
face’ set centered at 2 + i (which we will denote S) is illustrated in this diagram:
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For our first example lets consider the map induced by the function f(z) =
z + 1− 3i. Notice that this map is just a translation, shifting S 1 unit to the right
and 3 units down. So f(S) with be the smiley-face centered at 3− 2i:

Now we will consider the function g(z) = zeiπ. Writing z in exponential form
we have

g(z) = zeiπ

= rei(θ+π).

Now we see that g(z) is a rotation by π radians:
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Now we will do some more mappings with a different set. The set we will know
use the rectangular region R := {z : 1 ≤ Re(z) ≤ 2, 1 ≤ Im(z) ≤ 2.

Now lets think about how the function f(z) = 2zeiπ/2 affects our region R.
Putting z into exponential form we have:

f(z) = 2reiθ · eiπ/2 = 2rei(θ−π/2).

We now see that f(z) will rotate all points by −π/2 radians and then double its
distance from the origin. The following diagram illustrates the mapping of R to
f(R).
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Lets consider another function, g(z) = z − z. To better understand what this
function is doing we make the substitution z = x+ iy:

g(z) = x+ iy − (x− iy) = 2iy = 2iIm(z).

This shows that g(z) is the function which doubles the imaginary part and then
makes the real part zero. The affect g(z) has on R is illustrated in the following
figure.

Now we will consider a couple of functions on one more region, T := {z : 0 <
|z| < 2, 0 < θ < π/3}:
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First we consider the function f(z) = z2. Taking powers suggests that we should
write z exponentially;

f(z) = f(reiθ) = (reiθ)2 = r2ei2θ.

We now see that f squares the radius and double the argument. Thus the image
of T will be f(T ) = {z : 0 < |z| < 4, 0 < θ < 2π/3}:

Now we consider the function g(z) = 1/z. Again working with the exponential
form of z we can obtain a better understanding of this function:

g(z) = z−1 = r−1e−iθ.

Conceptually we can think of this function as inverting the radius and flipping over
the real line. We illustrate g(T ) in a diagram:
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6. Lecture 6: Limits
We know that (2 + i)2 = 3 + 4i. However, what does limz→2+i z

2 = 3 + 4i mean?

Conceptually this means that if z is close to 2 + i, then z2 is close to 3 + 4i.
An even better way to think of this is that the closer z is to 2 + i, the closer z2 will
be to 3 + 4i.

If we know how close we need z2 to 3 + 4i, call this error ε, then we can say how
close z must be to 2 + i to guarantee error < ε. We can find a neighborhood of
2 + i, (with radius δ) so that every z in the neighborhood gives |z2 − (3 + 4i)| < ε.

More formally we can say that limz→2+i z
2 = 3 + 4i means that for every ε > 0,

there is a δ > 0 such that if |z − (2 + i)| < δ, then |z2 − (3 + 4i)| < ε.

In general we have the following definition of a limit:

Definition 6.1. limz→2+i f(z) = L means that for every ε > 0, there is
a δ > 0 such that if |z − z0| < δ, then |f(z)− L| < ε.

Example 6.2. Prove limz→i z
2 = −1.

Start with ε = 0.1.
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We would like to find a δ so that any point in the neighborhood |z− i| < δ
will be mapped to a point in the neighborhood |z − (−1)| < 0.1. We see
that choosing δ = 0.1 doesn’t work since, for example, z = 1.09i is in the
disk |z− i| < 0.1, but (1.09i)2 = −1.1881 is not within a 0.1 neighborhood
around -1.

This means that our value for δ must be smaller than 0.1. To find a
value for δ that works trial and error is not so great; instead we will use
algebra.

|z2 − (−1)| = |(z − i)(z + i)|
= |z − i| · |z + i|
< δ|z + i|

Consider the following diagram:

from this we see that |z + i| < 2 + δ since z is an arbitrary point in
|z − i| < δ. Thus we have

|z2 − (−1)| < δ|z + i| < δ(δ + 2) < ε = 0.1.
We want to find a δ satisfying the above inequality. We know δ is suppose
to be small, probably less than 1 (which we can confirm by our attempt
with δ = 0.1). So if δ ≤ 1, then δ(δ + 2) ≤ δ · 3. If δ is also less than or
equal to ε/3, then

δ(δ + 2) ≤ δ · 3 ≤ ε

3 · 3 = ε.

So we see that when ε = 0.1, then δ = 0.1/3 should be sufficient.
We finish this example by writing a more streamlined solution.
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Start in the neighborhood |z − i| < 0.1/3. Check the target distance,
|z2 − (−1)| = |z + i| · |z − i|

< |z + i| · 0.1
3

< (2 + 0.1
3 ) · 0.1

3
< 3 · 0.1

3
= 0.1 = ε.

Thus we see that choosing δ = min{1, ε/3} will satisfy our limit definition.

Example 6.3. Show limz→−1
1

2z=1 = −1.
Let ε > 0 be given. If |z − (−1)| < δ, then

| 1
2z + 1 − (−1)| = | 1

2z + 1 + 1|

= |2z + 2
2z + 1 |

= |2(z + 1)
2z + 1 |

= | z + 1
z + 1/2 |

= |z + 1|
|z + 1/2|

= |z + 1|
|z + 1/2| .

Notice that we have gotten |z − (−1)| in the numerator and we know
|z − (−1)| < δ, thus

|z + 1|
|z + 1/2| <

δ

|z + 1/2| .

We now use the following diagram to find an inequality for |z + 1/2|
involving δ:
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In the diagram since z must lie in the disk |z + 1| < δ, we can see that
the closest −1/2 can be to z is 1/2− δ and the furthest −1/2 can be from
z is 1/2 + δ, in other words

1
2 − δ < |z + 1

2 | <
1
2 + δ.

Using this we see that
δ

|z + 1/2| <
δ

1/2− δ .

Now if δ ≤ 1/4 then
δ

|z + 1/2| <
δ

1/2− 1/4 = 4δ.

Putting this altogether we have shown that if δ ≤ 1/4, then for any ε
we can have 4δ ≤ ε so δ ≤ ε/4. This means if |z + 1| ≤ min{1/4, ε/4},
then

| 1
2z + 1 + 1| < ε,

which is what we wanted to show.

We now give an example where the limit is NOT true.

Example 6.4. Try to show limz→4 2z − 3i = 6− 3i.
Notice that when z = 4 we have 2z− 3i = 8− 3i. Since 8− 3i 6= 6− 3i

we see that when ε is appropriately small 8 − 3i will be outside the disk
|z − (6 − 3i)| < ε, and thus there is no value of δ that will work (since
regardless of how small δ is 2z − 3i will still be in the starting disk).

We give one final example.

Example 6.5. Prove limz→−1 z
2 − 3z + 2 = 6.
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Proof. Let ε > 0 be given. If |z + 1| < δ, then
|z2 − 3z + 2− 6| = |z2 − 3z − 4|

= |z − 4| · |z + 1|.
But we know |z− 4| · |z+ 1| < |z− 4|δ. Also, using the following diagram
we can get a bound for |z − 4| in terms of δ.

From this we see that 5− δ < |z− 4| < 5 + δ. Also, from this, if we make
δ ≤ 1 then we have that 4 < |z − 4| < 6. So now we have

|z − 4|δ < 6δ ≤ ε.
And thus δ ≤ ε/6.

More succinctly we have for any given ε:

If |z + 1| < δ where δ = min{1, ε/6},
then |(z2 − 3z + 2)− 6| < ε.

�



COMPLEX ANALYSIS 33

7. Lecture 7: Limits That Do Not Exist and
Infinity

Limits do not always exist. For example the limit

lim
z→0

z

z

Does NOT Exist (DNE). In general to show the existence of a limit we try to land
everything into a target neighborhood of L with radius ε. To show limit does not
exist we want to show that points are ‘sent to for far away places’. Lets revisit the
limit we opened this section with:

Example 7.1. Show
lim
z→0

z

z
does not exists.

Let us write z as x+ iy so that
z

z
= x+ iy

x− iy
.

For complex limits in order for the limit to exist all limits (from all di-
rections) must agree. Thus if we find that the limit from two different
directions dissagree we will have shown that the limit does not example.
For our particular example we will consider the limit from the real and
imaginary axi.

From Real Axis. By fixing y = 0 and considering the limit as x
approaches zero we get the limit as we approach along the real axis. The
limit is

lim
(x,0)→(0,0)

x+ 0
x− 0 = 1.

From Imaginary Axis. Conversely if we fix x = 0 and consider the
limit as y approaches zero we will obtain a limit as we approach (0, 0)
from the imaginary axis:

lim
(0,y)→(0,0)

0 + iy

0− iy = lim
(0,y)→(0,0)

−y
y

= −1

So the ‘real’ limit and the ’imaginary’ limits disagree (1 6= −1), thus
the limit does not exist.

Example 7.2. Show

lim
z→0

z2

|z|2
does not exist.

Fistly let us rewrite z = x+ iy, to obtain

lim
z→0

z2

|z|2
= lim

(x,y)→(0,0)

(x+ iy)2

x2 + y2 .
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If we fix y = 0 we get the limit

lim
(x,0)→(0,0)

(x+ 0)2

x2 + 02 = 1.

Conversely if we fix x = 0 we get the limit

lim
(0,y)→(0,0)

(0 + iy)2

0 + y2 = lim
(0,y)→(0,0)

−y2

y2 = −1.

Since 1 6= −1 we see that the limit does not exist.

One may have observed that the ‘two’ examples we have given are really the
same since

z2

|z|2
= z2

zz
= z

z
.

We proceed with a new example (which is actually different from the previous
two):

Example 7.3. Show the limit

lim
z→0

Re(z)Im(z)
|z2|

does not exist.
Firstly we make the substitution z = x+ iy:

lim
z→0

Re(z)Im(z)
|z2|

= lim
(x,y)→(0,0)

xy

x2 + y2

If we fix y = 0 then
lim

(x,0)→(0,0)

x0
x2 + 02 = 0.

Similarly by fixing x = 0 we have

lim
(0,y)→(0,0)

0y
02 + y2 = 0.

So far the limits from the real and imaginary axis agree, so we can say
nothing about the limits existence. However lets consider coming in from
another direction and see if the limit still agrees.

By fixing x = y = c our limit becomes

lim
(c,c)→(0,0)

c2

2c2 = 1
2 .

But now, since 1/2 6= 0 the limit does not exist.

We state some useful theorems about limits:

Theorem 7.4. You can take the limit of the real and imaginary parts
separately.

For example if we have a function f(z) = u(x, y) + i · v(x, y) for z = x + iy.
Additionally if f(z) approaches the limit L = u0 + v0 as z approaches z0 = x0 + iy0
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then we have the following:
lim
z→z0

f(z) = L⇔ lim
(x,y)→(x0,y0)

u(x, y) = u0, and lim
(x,y)→(x0,y0)

v(x, y) = v0.

Theorem 7.5. If
lim
z→z0

f1(z) = L1 and lim
z→z0

f2(z) = L2

then
lim
z→z0

(f1(z) + f2(z)) = L1 + L2

Theorem 7.6. If
lim
z→z0

f1(z) = L1 and lim
z→z0

f2(z) = L2

then
lim
z→z0

(f1(z) · f2(z)) = L1 · L2.

Proof. Assume we know
lim
z→z0

f1(z) = L1 and lim
z→z0

f2(z) = L2.

This means to ”‘hit an L1 target”’ or ”‘L2 target”’ respectively. In other words
given a we know there exists a δ1 and a δ2 which satisfy |z − z0| < δ1 implies
|f1(z)−L1| < ε1 and |z− z0| < δ2 implies |f2(z)−L2| < ε2 for any given ε1 and ε2.

So let ε > 0 be given. We need to find a δ satisfying |z−z0| < δ which will imply
|f1(z)f2(z)− L1L2| < ε. Rewriting this we have

|f1(z)f2(z)− L1L2| = |f1(z)f2(z)− L1f2(z) + L1f2(z)− L1L2|

Now by the triangle inequality
|f1(z)f2(z)− L1f2(z) + L1f2(z)− L1L2| ≤ |f2(z)(f1(z)− L1)|+ |L1(f2(z)− L2|

and note
|f2(z)(f1(z)− L1)|+ |L1(f2(z)− L2| = |f2(z)||f1(z)− L1|+ |L1||f2(z)− L2|.

Now if |f2(z)− L2| ≤ (1/2)(ε/|L1|) we would be happy since we would have
|f2(z)||f1(z)− L1|+ |L1||f2(z)− L2| < |f2(z)||f1(z)− L1|+ ε/2

and we would be well on our way to finding a suitable δ. The good new is, is that
we can in-fact do this by letting ε2 = 1

2
ε
|L1| we can find a δ2.

If ε2 ≤ 1 then |f)2(z)| ≤ |L2|+ 1. And so
|f2(z)||f1(z)− L1|+ |L1||f2(z)− L2| ≤ (|L2|+ 1)|f1(z)− L1|+ |L1||f2(z)− L2|.

Now letting f1(z)− L1 < ε1 = (1/2)(ε/(|L1|+ 1)), we have

|L2|+ 1)|f1(z)− L1|+ |L1||f2(z)− L2| <
1
2ε+ 1

2ε = ε.

Now just use the δ which satisfies all 3 conditions. �
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Theorem 7.7. If
lim
z→z0

f1(z) = L1 and lim
z→z0

f2(z) = L2

then
lim
z→z0

(f1(z)/f2(z)) = L1/L2

so long that L2 6= 0.

Theorem 7.8. If P (z) is a polynomial then
lim
z→z0

P (z) = P (z0).

Proof. If P (z) = c, for c ∈ C then limz→z0 c = c. This can easily be proven with
an ε− δ proof.

We also have limz→z0 z = z0 which can be again proven easily with an ε − δ
proof.

Now our result follows easily by theorem 7.5 and theorem 7.6. (Recal that P (z)
can be written a0 + a1z + a2z

2 + · · ·+ anz
n for ai ∈ C. �

Theorem 7.9. If P (z) and Q(z) are polynomials and Q(z0) 6= 0 then

lim
z→z0

P (z)
Q(z) = P (z0)

Q(z0
.

Infinity
We have the following way to think of infinity

z →∞⇔ 1
z
→ 0,

and
lim
z→z0

f(z) =∞⇔ lim
z→z0

1
f(z) = 0.

In-fact we have the equivalence

lim
z→∞

f(z) = lim
z→z0

1
z
.

And from this
lim
z→∞

f(z) =∞⇔ lim
z→z0

1
f(1/z) = 0?.

Example 7.10. Find the following limit:

lim
z→∞

1
z + 1 .
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We have that

lim
z→∞

1
z + 1 = lim

z→0

1
1/z + 1

= lim
z→0

z

1 + z
= 0.

Example 7.11. Find the following limit:

lim
z→∞

z2 + 4
z2 − 4 .

We have that

lim
z→∞

z2 + 4
z2 − 4 = lim

z→0

(1/z)2 + 4
(1/z)2 − 4

= lim
z→0

1 + 4z2

1− z
= 1.

Example 7.12. Find
lim
z→0

1
z2 .

Because
lim
z→0

1
(1/z)2 = lim

z→0
z2 = 0

we also have
lim
z→0

1
z2 =∞.

Example 7.13. Find the limit

lim
z→−1

iz + 3
z + 1 .

Because
lim
z→−1

z + 1
iz + 3 = 0

3 = 0

we have
lim
z→−1

iz + 3
z + 1 =∞.

Example 7.14. Find the limit

lim
z→0

z2 + 3z
z − 2 .
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This is straightforward

lim
z→0

z2 + 3z
z − 2 = 02 + 3 · 0

0− 2 = 0.

Example 7.15. Find the limit

lim
z→∞

2z3 − 1
z2 + 1 .

We have

lim
z→∞

2z3 − 1
z2 + 1 = lim

z→0

2(1/z)3 − 1
(1/z)2 + 1

= lim
z→0

2− z3

z + z3 .

Since
lim
z→0

z + z3

2− z3 = 0,

we know
lim
z→−1

iz + 3
z + 1 .

Example 7.16. Find the limit

lim
z→∞

2z + i

z + 1 .

We have

lim
z→∞

2z + i

z + 1 = lim
z→0

2(1/z) + i

(1/z) + 1

= lim
z→0

2 + iz

1 + z

= 2
1 = 2.
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8. Lecture 8: Derivatives

Definition 8.1. A function is continuous at z0 if the following 3 con-
ditions hold:

(1) f(z0) exists
(2) limz→z0 f(z) exist.
(3) limz→z0 f(z) = f(z0).

We say a function f is continuous on a set S if f is continuous at every z0 ∈ S.
We give a formal definition of the derivative:

Definition 8.2. We define the derivative in the following fashion:

f ′(z) : = lim
z→z0

f(z)− f(z0)
z − z0

// = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z .

Make note that unlike the real derivative this ‘complex-derivative’ does NOT
represent the slope.

Lets give the example of taking a derivative using the formal definition.

Example 8.3. Find the derivative of f(z) = z2.

f ′(z) = lim
∆z→0

(z + ∆z)2 − z2

∆z

= lim
∆z→0

z2 + 2z∆z + ∆z2 − z2

∆z
= lim

∆z→0
2z + ∆z

= 2z.

Example 8.4. Find the derivative of f(z) = z.

f ′(z) = lim
∆z→0

z + ∆z − z
∆z

= lim
∆z→0

z + ∆z − z
∆z

= lim
∆z→0

∆z
∆z

= lim
∆z→0

∆x− i∆y
∆x+ i∆y .

But by lecture 7 we know that limit does not exist, and so the derivative
also does not exist.
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Example 8.5. Find the derivative of f(z) = |z|2.
Notice |z|2 = z · z. Using the definition of the derivative we have

f ′(z) = lim
∆→z

(z + ∆z) · (z + ∆z)− z · z
∆z

= lim
∆z→0

zz + z∆z + ∆zz + ∆z ·∆z − zz
∆z

= lim
∆z→0

z∆z + ∆zz + ∆z∆z
∆z

= lim
∆z→0

z∆z
∆z + z + ∆z

Notice that from Lecture 7 this limit only exists at z = 0.

Many of the formulas for derivatives we are accustom to carry over to complex
analysis:

d

dz
(c) = 0

d

dz
(z) = 1

d

dz
(zn) = nzn−1

d

dz
(c · f(z)) = c · f ′(z)

d

dz
(f(z) + g(z) = f ′(z) + g′(z).

The product, quotient, and chain rules all work as well. For the most part these
can be proved in the same way as they were in the real case.

We would like to obtain a way of checking whether or not a given function is
differentiable. Recall

f ′(z) = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z .

We can change this to real functions by letting z = x + iy and f(z) = u(x, y) +
iv(x, y),

f ′(z) = lim
(∆x,∆y)→(0,0)

u(x+ ∆x, y + ∆y)− u(x, y) + i(v(x+ ∆x, y + ∆y)− v(x, y))
∆x+ i∆y .

Lets check what occurs when ∆y = 0 and what happens when ∆x = 0; if these give
different limits then the limit does not exist (so neither does the derivative).

(1) Let ∆y = 0:

f ′(z) = lim
(∆x,0)→(0,0)

u(x+ ∆x, y)− u(x, y) + i(v(x+ ∆x, y)− v(x, y))
∆x

= lim
(∆x,0)→(0,0)

u(x+ ∆x, y)− u(x, y)
∆x + i(v(x+ ∆x, y)− v(x, y))

∆x
= Ux + iVx,
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where Ux is the partial derivative of u(x, y) with respect to x and Vx is the
partial derivative of v(x, y) with respect to x.

(2) Let ∆x = 0:

f ′(z) = lim
(0,∆y)→(0,0)

u(x, y + ∆y)− u(x, y) + i(v(x, y + ∆y)− v(x, y))
i∆y

= lim
(0,∆y)→(0,0)

−i(u(x, y + ∆y)− u(x, y))
∆y + (v(x, y + ∆y)− v(x, y))

∆y
= −iUy = Vy,

where Uy and Vy are the respective partial derivatives of u(x, y) and v(x, y)
in terms of y.

So, in order for the limit to exist we must have
Ux + iVx = Vy − iUy.

If we equate real and imaginary parts we obtain
Ux = Vy and Vx = −Uy.

The above equations are very important and are called the Cauchy-Riemann
equations.

Theorem 8.6. If the Cauchy Riemann equations are satisfied and the
partial derivatives Ux, Uy, Vx, Vy are each continuous, then f ′(z) exists
and is

f ′(z) = Ux + iVx = Vy − iUy.

Now lets repeat our earlier examples with this new theorem. For the most part
we will assume the partial derivatives are continuous for the following examples.

Example 8.7. Find the derivative of f(z) = z2.
Letting z = x+ iy we obtain

f(x+ iy) = (x+ iy)2 = x2 − y2 + i2xy.
Thus, u(x, y) = x2 + y2 and v(x, y) = 2xy. From these we can calculate
the following partial derivatives:

Ux = 2x
Uy = −2y
Vx = 2y
Vy = 2x.

We see that the Cauchy-Riemann equations are satisfied since 2x = 2x
and −2y = −(2y). Moreover

f ′(z) = 2x+ i2y = 2z.

Example 8.8. Find the derivative of f(z) = z.
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Let z = x+ iy so that we obtain
f(x+ iy) = x+ iy = x− iy.

So, u(x, y) = x and v(x, y) = −y. From these we have the partial deriva-
tives

Ux = 1
Uy = 0
Vx = 0
Vy = −1.

Notice that the Cauchy-Riemann equations are NOT satisfied since Ux 6=
Vy. Therefore the limit and the derivative do not exist.

Example 8.9. Find the derivative of f(z) = |z|2. Letting z = x+ iy,
f(x+ iy) = x2 + y2 + 0i.

Thus, u(x, y) = x2 + y2 and v(x, y) = 0. Taking partial derivatives we get
Ux = 2x
Uy = 2y
Vx = 0
Vy = 0.

From this we see that the Cauchy-Riemann equations are not satisfied in
general, only when x = y = 0. Thus the derivative does not exist anywhere
except for the origin. At this single point the derivative is f ′(0) = 0.

Lets move on to some new examples.

Example 8.10. Find the derivative of ez.
Letting z = x+ iy we can rewrite this as

f(z) = exeiy

= ex(cos(y) + i sin(y)).
So u(x, y) = ex cos(y) and v(x, y) = ex sin(y). Computing the partial
derivatives of these we get

Ux = ex cos(y)
Uy = −ex sin(y)
Vx = ex sin(y)
Vy = ex cos(y).
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We see that the Cauchy-Riemann equations are satisfied for all values of
x and y and that the derivative is

f ′(z) = ex cos(y) + iex sin(y)
= ex(cos(y) + i sin(y))
= exeiy

= ez.

Cauchy-Riemann in Polar Coordinates
Sometimes it will be convenient to use a polor-coordinate version of the Cauchy-

Riemann equations. In this case we will have
f(z) = u(r, θ) + iv(r, θ).

Using the change of variables x = r cos θ and y = r sin θ to change into polar form
see that

u(x, y) + iv(x, y)→ u(r cos θ, r sin θ) + iv(r cos θ, r sin θ).
Now we want to find the partials Ur, Uθ, Vr, Vθ. To do this we will recall the chain
rule from Calc III to obtain

Ur = UxXr + UyYr

= Ux cos θ + uy sin θ.
Similarly we can find Uθ:

Uθ = UxXθ + UyYθ

= Ux(−r sin θ) + Uy(r cos θ).
Analogous computations show

Vr = Vx cos θ + Vy sin θ
Vθ = Vx(−r sin θ) + Vy(r cos θ).

Using the fact that Vx = −Uy and Ux = Vy (from the CR equations), we have
Vr = −Uy cos θ + Ux sin θ
Vθ = Uy(−r sin θ) + Ux(r cos θ).

From the partial derivatives we’ve computed (possibly along with a little linear
algebra) one can show that the polar Cauchy-Riemann equations are

Vθ = rUr and Uθ = −rVr.

Example 8.11. Find the derivative of 1
z using the polar Cauchy-Riemann

equations.
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Let z = reiθ. Then we have
1
z

= 1
reiθ

= 1
r
e−iθ

= 1
r

(cos(−θ) + i sin(−iθ))

= 1
r

cos(θ)− 1
r
i sin(θ).

Thus, u(r, θ) = (1/r) cos(θ) and v(r, θ) = (1/r) sin(θ). From these we
obtain the following partial derivatives

Ur = −1
r2 cos(θ)

Uθ = −1
r

sin(θ)

Vr = 1
r2 sin(θ)

Vθ = −1
r

cos(θ).

We have rUr = Vθ and Uθ = −rVr4, so the Cauchy-Riemann equations
are satisfied and so f ′(z) exists for all z ∈ C. In fact the derivative is

f ′(z) = e−iθ(Ur + iVr)

= e−iθ(−1
r2 cos(θ) + i

1
r2 sin(θ))

= −e
−iθ

r2 (cos(θ)− i sin(θ))

= −(e−iθ)2

r2

= −1
(reiθ)2

= −1
z2 .
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9. Lecture 9: Analytic Functions and Harmonic
Functions

Analytic Functions

Definition 9.1. A function f is analytic if it is differentiable. If f is
differentiable in an open set then f is analytic in that set.

Remark 9.2. Analytic functions are also called holomorphic functions.

Definition 9.3. If f is analytic for all complex numbers, call it entire.

Theorem 9.4. If f ′(z) = 0 everywhere in domain D, then f(z) must be
constant in D.

(Recall that a domain must be open and connected).

Proof. Split f into real functions u and v as f(z) = u + iv. Since f ′(z) exists, it
must satisfy the Cauchy-Riemann equations. We also have that

f ′(z) = Ux + iVx = 0.
Thus, Ux = Vx = 0 and by the Cauchy-Riemann equations we must also have
Uy = Vy = 0. But now we see that all the partials of u and v are 0 so each of these
functions must be constant and so must f(z) = u+ iv. �

Remark 9.5. In general we will use ln for the real logarithm and log for the
complex logarithm.

Example 9.6. Find the derivative of f(z) = ln(r) + iθ for 0 < θ < 2π.
We must check that f(z) is analytic where it is defined. Notice that if

f(z) = u+ iv then we have u(r, θ) = ln(r) and v(r, θ) = θ. From these we
get the following partial derivatives:

Ur = 1
r

Uθ = 0
Vr = 0
Vθ = 1.
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Since rUr = Vθ and −rVr = Uθ, the Cauchy-Riemann equations are
satisfied. Moreover,

f ′(z) = e−iθ(Ur + iVr)

= e−iθ(1
r

+ 0)

= 1
z
.

Notice that

log(reiθ = log(r) + log(eiθ) = ln(r) + iθ,

So infact the last example shows that the derivative of log(z) is 1/z.

Theorem 9.7. If f and f are both analytic, then f is constant.

Proof. Let f(z) = u + iv and subsequently f(z) = u − iv. Since f is analytic we
must have Ux = Vy and Uy = −Vx. Similarly, since f is analytic, we must have
Ux = −Vy and Uy = Vx. But now we have

Uy = −Vx & Uy = Vx ⇒ 2Uy = 0⇒ Uy = 0,

and similarly

Uy = −Vx & Uy = Vx ⇒ 2Vy = 0⇒ Vy = 0.

But now our partial derivatives are all zero. This means that u and v must be
constant and so f must be constant as well. �

Harmonic Functions

Definition 9.8. A real-valued function H(x, y) is called a Harmonic
Function if the following two criterion are met:

(1) All second partial derivatives are continuous
(2) Hxx +Hyy = 0.

Remark 9.9. The equation Hxx+Hyy = 0 is Laplace’s equation. This equation
is important and physics. Harmonic functions can be used for problems such as
steady state of heat, electric charges, etc.

Theorem 9.10. If f = u + iv is analytic in a domain D, then u and v
are harmonic functions.

Proof. One of the things we must show is that the second partial derivatives are
continuous. We will hold off on showing this until subsequent lectures.
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We will however show that Laplace’s equation is satisfied. Since f is analytic
the Cauchy-Riemann equations are satisfied and we have

∂

∂x
(Ux = Vy)⇒ Uxx = Vyx.

and
∂

∂y
(Uy = −Vx)⇒ Uyy = −Vxy.

Now, by assuming the second partials are continuous, we have −Vxy = −Vyx.
Therefore,

Uxx + Uyy = Vyx − Vyx = 0.
A similar argument shows that Uyy + Vyy. Thus Laplace’s equation holds. �

Consider e−z, notice
e−z = e−x−iy

= e−x(cos(y)− i sin(y))
= e−x cos(y)− ie−x sin(y).

Recall that we have seen that ez is an entire function. Consequently this means
that u(x, y) = e−x cos(y) and v(x, y) = −e−x sin(y) should be harmonic functions.
Postponing the process of showing that the partial derivatives are continuous we
will just show that Laplace’s equation is satisfied. We have the following partial
derivatives:

Ux = −e−x cos(y)
Uy = −e−x sin(y)
Vx = −e−x sin(y)
Vy = e−x cos(y).

From these we get the second partial derivatives
Uxx = e−x cos(y)
Uyy = −e−x cos(y)
Vxx = e−x sin(y)
Vyy = −e−x sin(y).

We see that Uxx + Uyy = Vxx + Vyy = 0, and Largrange’s equation is satisfied.

Definition 9.11. If u and v are harmonic functions and satisfy Ux = Vy
and Uy = −Vx then u + iv is analytic and we say V is a Harmonic
Conjugate of U .

Example 9.12. Find a harmonic conjugate of U = 2xy.
First we must check that U is harmonic. Notice

Uxx = 0 and Vyy = 0,
so Uxx + Vyy = 0 and U is harmonic.
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To satisfy the Cauchy-Riemann equations we want to solve for V from
Ux = Vy = 2y and − Uy = Vx = −2x.

So now we can solve this system of differential equations using integration:∫
Vydy =

∫
2ydy

V = y2 + C1(x)
where C1(x) is a constant in terms of y (but NOT necessarily in terms of
x). Similarly ∫

Vydy =
∫
−2xdx

V = −x2 + C2(y)
where C2(y) is a constant in terms of x.

putting these together we have
V = y2 + C1(x) = −x2 + C2(y).

Therefore V must equal
V = y2 − x2 + C.

Example 9.13. Find a harmonic conjugate of U = y3 − 3x2y.
Taking partial derivatives we have

Ux = −6xy
Uy = 3y2 − 3x2

Uxx = −6y
Uyy = 6y.

Notice that Uxx − Uyy = 0, so U is harmonic.
Now since Vy = Ux and −Vx = Uy we have a differential equation.

Using integration we get∫
Vydy =

∫
−6xydy

V = −3xy2 + C1(x),
and ∫

Vxdx =
∫
−3y2 + 3x2dx

V = −3xy2 + x3 + C2(y).
So,

V = −3xy2 + C1(x) = −3xy2 + x3 + C2(y).
Therefore

V = −3xy2 + x3 + C.
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Example 9.14. Find the harmonic conjugate of U = e−2x sin(2y).
We take partial derivatives:

Vy = Ux = −2e−2x sin(2y)
− Vx = Uy = 2e−2x cos(2y).

By integrating the partials of V we get∫
Vydy =

∫
−2e−2x sin(2y)dy

V = e−2x cos(2y) + C1(x),
and ∫

Vxdx =
∫
−2e−2x cos(2y)dy

V = e−2x cos(2y) + C2(y).
Now notice that

V = e−2x cos(2y) + C1(x = e−2x cos(2y) + C2(y)
so

V = e−2x cos(2y) + C
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10. Lecture 10:Uniqueness, Functions, and
Branches

Uniqueness

Theorem 10.1. Suppose f ,g are analytic in domain D. Suppose further
that f = g at each point in an open set or a line segment in D. Then
f = g everywhere in D.

The following is an illustration of a domain containing a line segment and an
open set.

Later we will prove Theorem 10.1 with Taylor Series. Interestingly, we will see
that the Taylor Series converges to the function everywhere in D is the function is
analytic.

Recall that the Taylor series is

f(z) =
∞∑
n=0

f (n)(z0)
n! (z − z0)n.

We have the following beautiful theorem:

Theorem 10.2. (Reflection Principle) Suppose D is a domain symmetric
across the real axis. (In particular note that D must intersect the real axis
since it is connected). Then we will have

f(z) = f(z)⇔f is real when y = 0
(z ∈ R→ f(z) ∈ R).
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Proof. First we show that assuming f(x+ i0) is real implies f(z) = f(z).
Notice that

f(x+ i0) = u(x, 0) = iv(x, 0) = u(x, 0).
Now let g(z) = f(z) and see that

f(z) = f(x− iy)

= u(x,−y) + iv(x,−y)
= u(x,−y)− iv(x,−y).

Now define ũ = u(x,−y) and ṽ = v(x,−y) so that g(x + iy) = ũ − iṽ. From this
we get

ũ = u(x,−y) ṽ = −v(x,−y)
Ũx = Ux(x,−y) Ṽx = −Vx(x,−y)
Ũy = Uy(x,−y)(−1) Ṽy = Vy(x,−y)
= Vx(x,−y).

Notice Ũx = Ṽy and Ṽx = −Ũy. So g(z) is analytic.
Lets check g(z) on the real line (z = i0)

f(x+ i0) = u(x,−0)− iv(x,−0) = u(x, 0)− iv(x, 0),
by our starting assumption u(x, 0) = f(z + i0). So, g(z) = f(z) on the real axis (a
line segment) and by uniqueness this implies g(z) = f(z) everywhere in D.

Thus, g(z) = f(z), which implies

f(z) = f(z) = f(z).
This completes this direction of the proof.

Now we will show that by assuming f(z) = f(z) and z = x − iy it follows that
f(x+ i0) is real. We have

u(x, y) + iv(x, y) = u(x,−y) + iv(x,−y)
u(x, y)− iv(x, y) = u(x,−y) + iv(x,−y).

Proceed by plugging in y = 0:
u(x, 0)− iv(x, 0) = u(x, 0) + iv(x, 0).

Putting all terms on the same side gives 0 = 2iv(x, 0). Therefore v(x, 0) must equal
0. This means that f(x+ i0) = u(x, y) + i0, a real function. �

Example 10.3. Can we apply the reflection principal to f(z) = z2− 2z?
Notice that f(z) = z2 − 2z. And

f(z) = z2 − 2z
= z2 − 2z.

So f(z) = f(z). Moreover we have
x ∈ R→ f(x) = x2 − 2x ∈ R.
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Thus both assertions of the reflective principle are true.

Example 10.4. Can we apply the reflection principal to g(z) = z2 − iz?
Notice that g(z) = z2 − iz. And

g(z) = z2 − iz
= z2 + iz.

So f(z) 6= f(z). Moreover we have
x ∈ R→ g(x) = x2 − ix /∈ R.

Thus both assertions of the reflective principle are false.

Functions
We know ez = ex cos y + iex sin y.

Note: Normally z1/n is thot of as nth roots, but for exponential functions we will
have

e1/n = e1/n cos 0 + ie1/n sin 0,
which is just a the function e1/n on the real line.
Properties of Exponential Functions:

ea+b = eaeb

ea−b = ea/eb

e0 = 1
d

dz
dz = dz

ez 6= 0 for all z ∈ C.
These are all properties familiar to the real exponential function, but we also have
some additional properties:

|ez| = |ex||eiy| = ex

ez+i2πk = ez.

Notice that ez is periodic in teh imaginary direction. Also, unlike in the real case,
ez may take on negative values; for example eiπ = −1.

Example 10.5. Solve ez = 1 + i for z.
Notice that

ez = 1 + i

exeiy =
√

2ei(π/4+2πk).

Thus, ex =
√

2→ x = ln
√

2 and y = π/4 + 2πk.
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Therefore z = x+ iy = ln
√

2 + i(π/2 + 2πk).
On a side note, this means that log(1 + i) = ln

√
2 + i(π/4 + 2πk).

We can define the complex log more gerneraly. Since log is the inverse of ez
notice

eu+iv = x+ iy = reiθ.

So eu = r → u = ln r and v = θ + 2πk. This means that

log(z) = ln(r) + i(θ + 2πk).

Example 10.6. Find log(−1). This is just a direct computation:
log(−1) = log(eiθ)

= ln 1 + i(π + 2πk)
= iπ(1 + 2k).

Branch

Definition 10.7. A branch is when we limit our angles θ to a 2π range
α < θ < α+ 2π

where we call α the branch cut.

If −π < θ < π, (the principal branch) we will use Log(z), (with a capitol ‘L’).
Note that log(z) is undefined at θ = α (where α is the branch cut); log(z) jumps
by i2π across the branch cut.

For example if we have the branch 0 < θ < 2π, then log(z) will NOT be defined
when z = 0 or when Arg(z) = 0.
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Log Rules:
log(ab) = log(a) + log(b)
log(a/b) = log(a)− log(b)
log(ar)− r log(a)

These always work for the multi-valued version of log, but NOT necessarily when
we have a branch cut. Also, if we have a branch, then we will have the familiar
derivative

d

dz
log z = 1

z
.

Example 10.8. Find Log(i(−2 + 2i)) and Logi+ Log(−2 + 2i).
This can be done with log properties

Log(i(−2 + 2i)) = Log(i(−2− 2i))

= Log(
√

8e−i 3π
4 )

= ln
√

8− i3π4 .

Now we find Logi+ Log(−2 + 2i). This is again an application of log
properties.

Log(i) + Log(−2 + 2i) = Log(eiπ2 ) + Log(
√

8e−i 3π
4 )

= ln(1) + i
π

2 + ln(
√

8) + i
π

3
= ln(

√
8) + i

5π
4 .

From these two computations we see that
Log(i(−2 + 2i)) 6= Log(i) + Log(−2 + 2i).

Thus in general Log(zw) 6= Log(z) + Log(w) when we have a branch.
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11. Lecture 11:Complex Powers, Trig Functions,
Integrals, and Contours

Complex Powers

Definition 11.1.
zc := ec log(z).

Example 11.2. Evaluate ii.
From our definition we have

ii = ei log(i)

= ei(ln(1)+( pi2 +2πk))

= e−(π2 +2πk).

Interestingly we have that ii = e−(π2 +2πk) is always a real number.

Normal rules for exponents still work,

za+b = zazb

za−b = za

zb

(za)b = zab.

Additionally we have the familiar rules for zc and cz for some fixed c ∈ C differen-
tiation,

d

dz
zc = d

dz
ec log(z))

= ec log(z) · c
z

= zc · c
z

= czc−1,

and
d

dz
cz = d

dz
ez log(c)

= ez log(c) log(c)
= cz log(c).
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Examples 11.3.
d

dz
2x = 2x ln(2)

d

dz
iz = iz log(i).

Trig
Recall that eiθ = cos(θ)+ i sin(θ). From this we can obtain the following formula

for cos(θ)

e−iθ = cos(θ)− i sin(θ)
eiθ + e−iθ = 2 cos(θ)

cos(θ) = eiθ + e−iθ

2 ,

and a similar formula for sin(θ),

eiθ − e−iθ = 2i sin(θ)

sin(θ) = eiθ − e−iθ

2i .

These should still work for complex θ, so we get the complex definition of the trig
functions

cos(z) = eiz + e−iz

2 and sin(z) = eiz − e−iz

2i ,

from which all other trig functions follow.
Properties of Trig Functions:

d

dz
sin(z) = cos(z)

d

dz
cos(z) = − sin(z)

sin2 z + cos2 z = 1
sin(z + 2π) = sin(z)
cos(z + 2π) = cos(z).

Also sin(z) is and odd function and cos(z) is an even function. All these properties
are the same as they are in the real case. We show why sin2 z + cos2 z = 1:(

eiz − e−iz

2i

)2

+
(
eiz + e−iz

2

)2

= (−ei2z − e−i2z + 2e0) + (ei2z + e−i2z + 2e0)
4

= 4
4

= 1.

Integrals
When we take integrals we will take them over paths. A parametrization of a

path is
z(t) = x(t) + iy(t).
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For example, the following diagram illustrated a path from a to b:

Example 11.4. A familiar path is the unit circle:
cos θ + i sin θ = eiθ = 1 and 0 ≤ θ < 2π.

We can find the velocity, z′(t) along a path s as follows,

z′(t) = x′(t) + iy′(t).

Taking the modulus of the velocity we obtain the speed,

|z′(t)| = |x′(t) + iy′(t)| =
√
x′(t)2 + y′(t)2.

We can also take integrals of along paths. Given a path w(t) = x(t) + iy(t),∫ b

a

w(t)dt =
∫ b

a

Re(w(t))dt+ i

∫ b

a

Im(w(t))dt.
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Example 11.5. Find the integral along the path w(t) = (1 + it)2 from 0
to 1.

We can do this with as we described above;∫ 1

0
(1 + it)2dt =

∫ 1

0
1− t2dt+ i

∫ 1

0
2tdt

= t− t3

3

∣∣∣1
0

+ i

(
t2
∣∣∣1
0

)
= 1− 1

3 + i

= 2
3 + i.

Lets see what happens if, instead of splitting the integral into real and
imaginary part, we just integrate directly from w(t):∫ 1

0
(1 + it)2dt =

∫ 1

0

(1 + it)2

i
d(1 + it)

= (1 + it)3

3i

∣∣∣1
0

= 1
3i ((1 + i)3 − 13)

= 2
3 + i.

See that we get the same result this way.

Example 11.6. Calculate the integral
∫ π/4

0 eiθdθ.∫ π/4

0
eiθdθ = eiθ

i

∣∣∣π/4
0

= eiπ/4

i
− e0

i

=
√

2
2 − i

(
1−
√

2
2

)
.

Contours

Definition 11.7. A contour (also known as a curve) is a path in the
complex plain thot of as a shape (as opposed to a parametrization).

Definition 11.8. A contour is simple if it does not cross itself.
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Definition 11.9. A closed contour is one that starts and ends at the
same point.

For simple closed contours we consider counterclockwise to be the positive di-
rection, or positive orientation.
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12. Lecture 12:Integrals over paths

Example 12.1. Calculate
∫
C

1
zdz where C is the following simple closed

positively oriented contour:

Firstly we parametrize C as
z = 2eiθ for 0 ≤ θ ≤ 2π.

From this we also have that dz = 2ieiθdθ. Thus,∫
C

1
z
dz =

∫ 2π

0

1
2eiθ dθ

=
∫ 2π

0
idθ

= 2πi.

In general for a given parametrization of a contour C, z(t) for a ≤ t ≤ b, we can
find the integral of f(z) over C as∫

C

f(z)dz =
∫ b

a

f(z(t))z′(t)dt

Remark 12.2. The following integral gives the length of the curve C:∫ b

a

|z′(t)|dt.

Example 12.3. If C is the right half-circle of radius 5 centered at 0 and
oriented counter clockwise (as illustrated in the diagram) then compute∫
C
zdz.
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A parametrization of C is z(θ) = 5eiθ for −π/2 ≤ θ ≤ π/2. From this we
also have that dz = 5ieiθdθ. Thus∫

C

z =
∫ π/2

−π/2
(5eiθ)i5eiθdθ

=
∫ π/2

−π/2
5e−iθi5eiθdθ

=
∫ π/2

−π/2
25idθ

= 25πi.

Example 12.4. Integrate f(z) = y−x−i3x2 along the path C = C1+C2,
where C1 and C2 are the paths illustrated in the following diagram.
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Notice we can split up this integral as follows∫
C

f(z)dz =
∫
C1

f(z)dz +
∫
C2

f(z)dz.

We can also find parametrization for C1 and C2:
C1 : 3it 0 ≤ t ≤ 1 dz = 3idt
C2 : 3i+ 3t 0 ≤ t ≤ 1 dz = 3dt

Thus,∫
C

f(z)dz =
∫ 1

0
(3t− 0− i3(0)2)3idt+

∫ 1

0
(3− 3t− i3(3t)2)3dt

= (3
2 t

2)(3i)
∣∣∣1
0

+ (3t− 3
2 t

2 − i9t3)3
∣∣∣1
0

= 9i
2 + (3− 3

2 − i9)3

= 9
2 − i

45
2 .

Now lets try a similar integral.

Example 12.5. Integrate f(z) = y − x− i3x2 over C3.

We can parametrize C3 as
C3 : (3 + 3i)t 0 ≤ t ≤ 1 dz = (3 + 3i)dt.
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Now integrating we have∫
C3

f(z)dz =
∫ 1

0
(3t− 3t− i3(3t)2)(3 + 3i)dt

= (−i9t3)(3 + 3i)
∣∣∣1
0

= −i27 + 27.

Now notice that the previous two examples show that the integral depends upon
the path we take, despite having the same starting and ending points. However,
we will later see that if f(z) is analytic we do in fact get the same solution of the
integral regardless of the path we choose.

We close out this lecture with one final example.

Example 12.6. integrate
∫
C
z1/2dz over the positively oriented upper half

circle with radius 3.

Since z1/2 is multivalued, we have to pick a branch. We will choose the
branch −π < 0 < 3π/2.
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We can parametrize our path of integration as z(θ) for 0 ≤ θ ≤ π and
find that dz = 3ieiθdθ. And now we can compute the integral:∫

C

z1/2dz =
∫ π

0
(3eiθ)1/23ieiθdθ

=
∫ π

0
33/2ei3θ/2idθ

= 33/2
(

i

i3/2

)
ei3θ/2

∣∣∣π
0

= 31/22ei3θ/2
∣∣∣π
0

= 2
√

3
(
ei3π/2 − e0

)
= 2
√

3(−i− 1).
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13. Lecture 13:Bounds on Integrals and
Antiderivatives

Sometimes it is not necessary to compute exact values for an integral. For
example if we can show ∣∣∣∣∣

∫ b

a

z(t)dt

∣∣∣∣∣ = r0e
iθ0 .

For some complex number r0e
iθ0 . From this we know∣∣∣∣∣
∫ b

a

z(t)dt

∣∣∣∣∣ =
∣∣r0e

iθ0
∣∣ = r0.

But notice

r0 = e−iθ0

∫ b

a

z(t)dt

=
∫ b

a

eiθ0z(t)dt.

Note that r0 is a positive real number and therefore the imaginary part of
∫ b
a
eiθ0z(t)dt

must be zero. From this we have

r0 =
∫ b

a

eiθz(t)dt =
∫ b

a

Re(eiθ0z(t))dt.

Recall that Re(z) ≤ |z|, so

r0 =
∫ b

a

Re(eiθ0z(t))dt ≤
∫ b

a

|e−iθ| · |z(t)|dt =
∫ b

a

|z(t)|dt.

To summarize, we have shown the following:

Theorem 13.1 (Triangle Inequality for Integrals).∣∣∣∣∣
∫ b

a

z(t)dt

∣∣∣∣∣ ≤
∫ b

a

|z(t)| dt.

Remark 13.2. Notice the similarity between this and the standard triangle in-
equality

|z1 + z2| ≤ |z1|+ |z2|.

We now prove the following useful theorem:

Theorem 13.3. Assume C is a contour with length L and |f(z)| ≤ M
for all z on C. Then ∣∣∣∣∫

C

f(z)dz
∣∣∣∣ ≤M · L
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Proof. Assume z(t) for a ≤ t ≤ b is a parametrization of C. Then we have∣∣∣∣∫
C

f(z)dz
∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(z(t))z′(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(z(t))| · |z′(t)|dt ≤M
∫ b

a

|z′(t)|dt = ML.

For the last equality note that
∫ b
a
|z′(t)|dt is the legnth of our contour C, which we

denote L. �

Example 13.4. Given the contour C illustrated in the following diagram:

find a bound for |
∫
C

z+4
z3−1dz|.

We have that ∣∣∣∣∫
c

z + 4
z3 − 1

∣∣∣∣ ≤M · L
for some M and L which me must find. L is easy to find since it is just
the length of our contour, 4π

4 = π.
Finding M is not quite as easy. First we notice that∣∣∣∣ z + 4

z3 − 1

∣∣∣∣ = |z + 4|
|z3 − 1| .

Using the triangle inequality we can show
|z + 4| ≤ |z|+ |4| = 2 + 4 = 6

|z3 − 1| ≥ ||z|3 − |1|| = |23 − 1| = 7.
Notice that we have used |z| = 2, since this holds for all z in C. From
these inequalities we have

|z + 4|
|z3 − 1| ≤

6
7 = M.

So putting this altogether we have the bound∣∣∣∣∫
C

z + 4
z3 − 1dz

∣∣∣∣ ≤ 6π
7 .
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Example 13.5. Find a bound for limR→∞

∣∣∣∫CR z1/2

z2+1

∣∣∣, where CR is the
origin centered half circle in the upper half plane with radius R.
Additionally we choose the branch −π/2 < θ < 3π/2. We must choose a
branch since z1/2 is multivalued. We are trying to find M and L so that

lim
R→∞

∣∣∣∣∫
CR

z1/2

z2 + 1

∣∣∣∣ ≤ML.

It is easy to see that the length of our curve is just L = πR.
Notice that |z|1/2 = R1/2, this will be helpful in finding M . By the

triangle inequality
|z2 + 1| ≥ ||z2| − 1| = |R2 − 1| = R2 − 1

for R sufficiently large. From this we can obtain our bound:

lim
R→∞

∣∣∣∣∫
C

z1/2

z2 + 1dz
∣∣∣∣ ≤ lim

R→∞

(
R1/2

R2 − 1

)
(πR) = 0.

This means that
lim
R→∞

∣∣∣∣∫
C

z1/2

z2 + 1dz
∣∣∣∣ = 0

and
lim
R→∞

∫
C

z1/2

z2 + 1dz = 0.

13.1. Antiderivatives.

In the above diagram we have∫
C1

f(z)dz =
∫
C2

f(z)dz =
∫
C3

f(z)dz = F (z2)− F (z1).

In particular, notice the similarity to the fundamental theorem of Calculus.

Theorem 13.6. Suppose f(z) is continuous on domain D. Then the
following are equivalent:
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(1) f(z) has an antiderivative F (z) defined thru out D. (Notice
F ′(z) = f(z)).

(2) For any 2 points z1, z2 ∈ D, all integrals of f(z) on contours in
D from z1 to z2 give the same value.

(3) Integrals of f(z) around closed contours in D equal 0.

Proof. (2)⇒ (3) is clear since to get a closed contour we just let the starting point
z1, and ending point z2 coincide.

(1)⇒ (2). Assume we have F (z) with F ′(z) = f(z).

Let z1, z2 ∈ D and C be a contour from z1 to z2. Assume further that we can
parametrize our contour as a function of t, z(t) for a ≤ t ≤ b where z(a) = z1 and
z(b) = z2. From this parametrization we obtain the following real integral∫

C

f(z)dt =
∫ b

a

f(z(t))z′(t)dt.

But notice
d

dt
(F (z(t)) = F ′(z(t))z′(t) = f(z(t))z′(t).

Using this we have ∫
C

f(z)dz =
∫ b

a

d

dt
(F (z(t))) dt

= F (z(t))
∣∣∣b
a

= F (z(b))− F (z(a))
= F (z2)− F (z1).

Notice that this final expression for our integral depends only upon the starting
and ending points of the contour z1 and z2, and thus is path independent.

(2) ⇒ (1). We need to find the antiderivative F (z). To do this first pick some
z0 ∈ D.
We now define F (z):

F (z) :=
∫
z0

zf(s)ds.

For some small ∆z we have

F (z + ∆z)− F (z) =
∫ z+∆z

z

f(s)ds
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Notice we also have ∫ z+∆z

z

f(z)ds = f(z)∆z.

This suggests that

lim
∆z→0

[
F (z + ∆z)− F (z)

∆z − f ′(z)
]
.

To show this notice
F (z + ∆z)− F (z)

∆z − f(z)∆z
∆z = 1

∆z

(∫ z+∆z

z

(f(s)− f(z))ds
)
.

So, for any ε > 0 we can find a δ so that |s− z| ≤ |∆z| < δ. Then |f(s)− f(z)| < ε
and ∣∣∣∣ 1

∆z

∣∣∣∣ ·
∣∣∣∣∣
∫ z+δz

z

f(s)− f(z)ds

∣∣∣∣∣ ≤ 1
|∆z| (ε)|∆z| = ε.

So we see that ε goes to 0 as |∆z| goes to zero. �
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14. Lecture 14:Integrals
We will need the following theorem from Calculus III.

Theorem 14.1 (Green’s Theorem).∫
C

Pdx+Qdy =
∫∫

A

(Qx − Py)dA.

Theorem 14.2 (Cauchy-Goursat). Suppose f(z) is analytic in domain
D, and C is a simple closed contour in D and that everything inside C is
contained in D. Then, ∫

C

f(z)dz = 0.

Proof. Let the parametrization of C be z(t) where a ≤ t ≤ b. Let us write z(t) =
x(t) + iy(t). Then we have∫

C

f(z)dz =
∫ b

a

f(z(t))z′(t)dt

=
∫ b

a

(u+ iv)(x′ + iy′)dt

=
∫ b

a

(u+ iv)(dx+ idy)

=
∫
C

udx− vdy + i

∫
C

udy + vdx.

And by Green’s theorem∫
C

f(z)dz =
∫∫

A

−vx − uydA+ i

∫∫
A

ux − vydA.

But by the Cauchy-Riemann equations, ux = vy and uy = −vx, and so our integral
becomes zero. �

Theorem 14.3 (Deform Paths). Let C1 and C2 be positively oriented,
simple, closed contours with C1 inside of C2. If f(z) is analytic between
C1 and C2, then ∈C1 f(z)dz =

∫
C2
f(z)dz.

Proof. Consider the following diagram:
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From this diagram,∫
C

f(z)dz =
∫
C2

f(z)dz +
∫
Ci

f(z)dz +
∫
Co

f(z)dz −
∫
C1

f(z)dz.

But we know that this sum of integrals equals zero by the Cauchy-Goursat Theorem.
Notice however, that the contour Ci = −Co as the distance between Ci and Co
approaches zero. Thus we have

0 =
∫
C2

f(z)dz −
∫
C1

f(z)dz.

�

Example 14.4. For example in the following diagram we can deform the
contour C1 to the contour C2.

In this diagram we have denoted singularities with dots. Note that in our
deformation process we cannot deform the contour ‘thru’ any singularity.

In the following example we deform a non-simple countour into several simple
contours.

Example 14.5. Notice that we can break an integral of a non-simple
contour into separate parts where each part is a simple contour:
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Example 14.6. Integrate f(z) = 1/z over the contour C:

Separating the non-simple contour C into the two simple contours C1 and
C2 we have ∫

C

1
z
dz =

∫
C1

1
z
dz +

∫
C2

1
z
dz

=
∫
C1

1
z
dz.

By deformation we can turn C1 into Cr, where Cr is an origin centered
circle with radius r small enough so that Cr is inside C1. A parametriza-
tion for Cr is z = reiθ for 0 ≤ θ ≤ 2π, and from this we have dz = rieiθdθ.
Using this we can compute the integral:∫

Cr

1
z
dz =

∫ 2π

0

1
reiθ

ireiθdθ

=
∫ 2π

0
idθ

= 2πi.
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Theorem 14.7 (Cauchy’s Integral Formula (CIF)). Let f(z) be analytic
everywhere inside and on a contour C which is positively oriented, simple,
and closed. If z0 is inside C then,

f(z0) = 1
2πi

∫
C

f(z)
z − z0

dz.

(equivalently
∫
C

f(z)
z−z0

dz = 2πif(z0))

Proof. Let r > 0 be small enough so that |z − z0| = r is inside C. Then∫
C

f(z)
z − z0

dz =
∫
Cr

f(z)
z − z0

dz.

Now consider∫
C

f(z)
z − z0

dz − 2πif(z0) =
∫
Cr

f(z)
z − z0

dz −
∫
Cr

f(z0)
z − z0

dz

=
∫
Cr

f(z)− f(z0)
z − z0

dz.

Since f(z) is continuous there is a δ so that |z−z0| < δ implies |f(z)−f(z0)| < ε
2π .

In fact we can come up with a bound:∣∣∣∣∫
Cr

f(z)− f(z0)
z − z0

∣∣∣∣ ≤M · L.
It is easy to find that the length of our curve L, is 2πr. We can also find that
M , the maximum value of

∣∣∣ f(z)−f(z0)
z−z0

∣∣∣ in our domain, is less than ε/(2π)
r . Thus our

bound becomes ∣∣∣∣∫
Cr

f(z)− f(z0)
z − z0

∣∣∣∣ < ε

Moreover, for any ε > 0 we have∣∣∣∣∫
Cr

f(z)− f(z0)
z − z0

− 2πif(z0)
∣∣∣∣ < ε.

This implies ∣∣∣∣∫
Cr

f(z)− f(z0)
z − z0

− 2πif(z0)
∣∣∣∣ = 0

and thus ∫
Cr

f(z)− f(z0)
z − z0

= 2πif(z0).

�

Examples 14.8. Consider the following contour Cs:
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• Compute
∫
Cs

z
(z2+9)(z−1−ui)dz.

Notice that we have singularities at z = 3i, z = −3i, and 1 + i.
But only one of these, 1 + i, is in our contour so that is the only
one we will need to worry about for our integral. We now rewrite
our integral and apply Cauchy’s Integral Formula:∫

Cs

z

(z2 + 9)(z − 1− ui)dz =
∫
Cs

(
z

z2+9

)
z − (1 + i)dz

= eπif(1 + i)

= 2πi 1 + i

(1 + i)2 + 9 = −14π
85 + 22π

85 i.

• Compute the integral
∫
Cs

ez

z2−25dz.
This one is easy. First notice that the singularities are ±5.

But both of these are outside of our contour and thus our integral
just becomes 0.

• Compute
∫
Cs

cos(z)
z2+4zdz.

Firstly we notice the singularities are at 0 and −4. Out of
these two only 0 is inside the contour. Rewriting the integral and
applying Cauchy’s Formula we get,∫

Cs

cos(z)
z2 + 4z dz =

∫
Cs

(
cos(z)
z+4

)
z

dz

= 2πif(0)

= 2πicos(0)
4

= πi

2 .
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Lets see what happens when we play around with Cauchy’s Formula by taking
derivatives:

f(s) = 1
2πi

∫
C

f(z)
z − s

dz

f ′(s) = 1
2πi

∫
C

f(z)
(z − s)2 dz

f ′′(s) = 2
2πi

∫
C

f(z)
(z − s)3 dz

...
...

f (n)(z) = n!
2πi

∫
C

f(z)
(z − s)n+1 dz

What we have just observed is the extension of Cauchy’s Integral Formula.

Theorem 14.9 (Cauchy’s Integral Formula Extension).∫
C

f(z)
(z − z0)n+1 dz = 2πi

n! f
(n)(z0).

Example 14.10. Compute
∫
C
e2z

z4 dz, where C is the unit circle.
Fist notice that we have the single singularity z = 0, which is in C. By

computing the first few deriviatives of f(z) = e2z we will be able to apply
the extension of Cauchy’s Formula:

f ′(z) = 2e2z

f ′′(z) = 4e2z

f ′′′(z) = 8e2z.

Now we have ∫
C

e2z

z4 dz = 2πi
3! · 8e

0 = 8πi
3 .

Let us now do an example with two singularities inside our contour of integration.

Example 14.11. Find the integral
∫
C

cos(z)
z2−1 dz, where z is the origin cen-

tered circle of radius 2.
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First notice that we have two singularities, 1 and −1, and that each of
these are inside of C. By deforming C into C1 and C2, as shown in the
following diagram, we turn our problem into two integrals which have sin-
gle singularities inside of them (which we already know how to do).

This makes the integral straightforward:∫
C

cos(z)
z2 − 1dz =

∫
C1

cos(z)
z2 − 1dz +

∫
C2

cos(z)
z2 − 1dz

=
∫
C1

(
cos(z)
z−1

)
z + 1 dz +

∫
C2

(
cos(z)
z+1

)
z − 1 dz

= 2πi cos(−1)
(−1− 1) + 2πicos(1)

1 + 1
= 0.
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15. Lecture 15:

Theorem 15.1. If f(z) is analytic at z0, then f ′(z) is analytic at z0.

Corollary 15.2. If f(z) is analytic at z0 it is infinitely differentiable at z0.

Remark 15.3. Earlier we used this fact (without proof) in our discussion of har-
monic functions.

Proof. If f(z) is analytic at z0, then f(z) is analytic in a neighborhood of z0. Let

C : |z − z0| = r

be inside the neighborhood. From this and by Cauchy’s Integral Formula we have

f ′′(z) = 2!
2πi

∫
C

f(z)
(z − z)3 dz.

Notice that this formula is true for any z inside C, so this implies that f ′(z) is
analytic. �

Theorem 15.4 (Cauchy’s Inequality). Suppose f(z) is analytic inside
and on a positively oriented circle, CR, centered at z0 and with radius R.
Also let |MR| = max |f(z)|. Then

|f (n)(z0)| ≤ n!MR

Rn

for a positive integer n.

Proof. By the extension of Cauchy’s Integral formula

f (n)(z0) = n!
2πi

∫
CR

f(z)
(z − z0)n+1 dz.

Taking the modulus of each side and bounding,∣∣∣f (n)(z0)
∣∣∣ =

∣∣∣∣ n!
2pii

∣∣∣∣ · ∣∣∣∣∫
CR

f(z)
(z − z0)n+1 dz

∣∣∣∣ ≤ n!
2πML.

We find the length of the curve, L = 2πR.
Finding M :

|f(z)|
|z − z0|n+1 ≤

MR

Rn+1 .

Thus, ∣∣∣f (n)(z0)
∣∣∣ ≤ n!

2πML ≤ n!
2π

MR

Rn+1 2πR = n!MR

Rn

�

Theorem 15.5 (Liouville’s Theorem). If a function f(z) is entire and
bounded for all complex numbers.Then f(z) is constant.
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Proof. By our assumption f(z) is bounded and thus |f(z)| ≤ M for some M .
Applying Cauchy’s Inequality on a circle CR, centered at z0 and having radius R,

|f ′(z)| ≤ 1! ·M
R1 = M

R
.

This holds for all R, so lets take R→∞:

|f ′(z)| ≤ M

∞
= 0.

Thus f ′(z) = 0 and f(z) must be constant �

We now prove the familiar Fundamental Theorem of Algebra with complex anal-
ysis.

Theorem 15.6 (Fundamental Theorem of Algebra). Every polynomial
P (z) = a0 + a1z + · · · + anz

n, with degree n ≥ 1 has a root, (a z1 such
that P (z1) = 0). Then P (z) can be factored P (z) = (z − z1)Q(z) where
Q(z) is an (n− 1)th degree polynomial.

Proof. By way of contradiction assume that P (z) is a polynomial with degree n ≥ 1,
and P (z) 6= 0 for all z ∈ C. Thus f(z) = 1/P (z) should be entire. Expanding P (z)
we have

f(z) = 1
a0 + a1z + · · ·+ anzn

.

So,
|p(z)| ≥ ||anzn| − |a0 + a1z + a2z

2 + · · ·+ an−1z
n−1||

for all |z| sufficiently large, (say |z| > R). From this inequality we have

|anzn| > 2|a0 + a1z + · · ·+ an−1z
n−1|.

Thus ∣∣|anzn| − |a0 + a1z + · · ·+ an−1z
n−1|

∣∣ > 1
2 |anz

n| > 1
2 |an|R

n.

So, |f(z)| = 1
|P (z)| <

1
1
2 |an|Rn

for |z| > R.
Inside |z| = R there are no asymptotes, so |f(z)| is bounded inside the circle as

well. Therefore, by Liouville’s Theorem, f(z)is constant. But this contradicts the
fact that P (z) has degree n ≥ 1. �

If z1 is a root of an nth degree polynomial P (z) (P (z1) = 0), then

P (z) = P (z)− P (z1)
= an(zn − zn1 ) + an−1(zn−1 − zn−1

1 ) + · · ·+ a1(z − z1) + a0(1− 1)
= (z − z1)Q(z),

where Q(z) is a polynomial with degree n− 1.
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15.1. Maximum Modulus Principle.

Lemma 15.7. If f(z) is analytic in domain D, suppose |f(z)| in D. Then f(z) is
constant in D.

Proof. Notice |f |2 = f(z)f(z) = C, where C is some constant. From this we have
f(z) = C/f(z). Thus f(z) is analytic. But now f(z) and f(z) are analytic; recall
tha this means f(z) is constant. �

Lemma 15.8. Suppose |f(z)| ≤ |f(z0)| for all z in a neighborhood |z − z0| < ε.
Then f(z) = f(z0) in the neighborhood.

Proof. We choose 0 < r < ε be the radius of a circle centered at z0. Then by
Cauchy’s Integral formula we have

f(z0) = 1
2πi

∫
Cr

f(z)
z − z0

dz.

Moreover, we have the following parametrization of Cr:

Cr : z(θ) = z0 + reiθ for 0 ≤ θ ≤ 2π.

And from this parametrization dz = rieiθdθ. Therefore

f(z0) = 1
2πi

∫ 2π

0

f(z0 + reiθ)
reiθ

ireiθdθ = 1
2π

∫ 2π

0
f(z0 + reiθ)dθ.

(This is known as Gauss’s Mean Value Theorem).
From this we have

|f(z)| ≤ 1
2π

∫ 2π

0
|f(z0 + reiθ)|dθ ≤ 1

2π

∫ 2π

0
|f(z0)|dθ = |f(z0)|.

And thus

|f(z0)| = 1
2π

∫ 2π

0
|f(z0 + reiθ)|dθ.

Since |f(z0)| ≥ |f(z0 + reiθ)|dθ we must actually have |f(z0)| = |f(z0 + reiθ.
Noting that the ‘biggest-spot’ equals the average. So every spot must bee qual. In
particualr

|f(z0)| = |f(z)| everywhere in the neighorhood
and |f(z)| =constant ⇒ f(z) is constant. �

Theorem 15.9 (Maximum Modulus Principle). If f(z) is analytic in
domain D, then either f(z) is constant in D or |f(z)| has no maximum
in D (the maximum is either on boundary or at infinity).

Proof. Suppose we have a max at z0 in D. Then we know f(z0) ≥ |f(z)| for all
z ∈ D. But by the previous lemma we have that for z in a neighbor hood of z0 we
must have f(z) = f(z0). By covering D in overlapping neighborhoods we see that
f(z) = f(z0) all for all z ∈ D.
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�
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16. Lecture 16: Series
16.1. Sequences. Sequences can be thot of as a ‘list’ of numbers:

z1, z2, z3, ...

A sequence is said to have a limit at z0 if, for any ε > 0 we can find an N such
that if n ≥ N , then |z − z0| < ε. These means that every term past zN is in a
neighborhood of |z − z0| < ε.

Notation:
lim
n→∞

zn = z0.

A sequence with not limits is said to diverge.

Theorem 16.1. If zn = xn + iyn, has the limit z0 = x0 + iy0, then
lim
n→∞

zn = z0 ⇔ lim
n→∞

xn = x0 and lim
n→∞

yn = y0.

16.2. Series. In general a series looks something like
∞∑
n=0

zn = z0 + z1 + z2 + · · · = lim
n→∞

Sn

where
Sn = z0 + z1 + z2 + · · ·+ zn.

If
∑∞
n=0 zn converges then limn→∞ zn = 0.

Remark 16.2. In Calculus II this was known as the ‘Limit Test for Convergence.’

If
∑∞
n=0 |zn| converges, then

∑∞
n=0 zn| converges too. If

∑∞
n=0 |zn| converges

then we say the series is Absolutely Convergent.
Recall the familiar geometric series:

∞∑
n=0

zn = 1
1− z if |z| < 1,

and diverges if |z| ≥ 1.

16.3. Taylor Series. Some useful Taylor series:

ez =
∞∑
n=0

zn

n!

sin(z) =
∞∑
n=0

(−1)n z2n+1

(2n+ 1)!

cos(z) =
∞∑
n=0

(−1)n z2n

(2n)! .

In general the Taylor Series of a function is

f(z) =
∞∑
n=0

f (n)(z0)
n! (z − z0)n
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Theorem 16.3. Suppose f(z) is Analytic in a circle |z − z0| < R. Then

f(z) =
∞∑
n=0

f (n)(z0)
n! (z − z0)n

inside the circle.

Proof. We will first prove for circles centered at zero, then generalize. For z0 = 0
the Taylor series becomes

f(z) =
∞∑
n=0

f (n)(0)
n! zn.

Choose z, inside the circle. Pick r so that |z1| < r < R. Then by Cauchy’s Integral
formula

f(z1) = 1
2πi

∫
Cr

f(z)
z − z1

dz.

But 1
z−z1

= 1
z ·

1
1− z1

z

, and since

|z1| < |z| = r ⇒
∣∣∣z1

z

∣∣∣ < 1,

we can apply the geometric series formula:

1
z
· 1

1− z1
z

= 1
z

∞∑
n=0”

(z1

z

)n
=
∞∑
n=0

zn1
zn+1 .

Substituting this series into our formula for f(z1),

f(z1) = 1
2πi

∫
Cr

f(z)
∞∑
n=0

zn1
zn+1 dz

=
∞∑
n=0

(
1

2πi

∫
Cr

f(z)
zn+1 dz

)
zn1 .

However, by the extension of Cauchy’s Integral Formula∫
Cr

f(z)
zn+1 dz = 2πi

n! f
(n)(0).
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Substituting this into our formula for f(z1)

f(z1) =
∞∑
n=0

f (n)(0)
n! zn1 .

This is the Taylor series centered at z0 = 0 (aka the Maclaurin series).
To find the Taylor series centered at a general z0 let g(z) = f(z + z0). We know

f(z) is analytic in |z−z0| < R, which implies g(z) is analytic in |z| < R. Explicitly,

f(z + z0) = g(z) =
∞∑
n=0

g(n)(0)
n! zn

=
∞∑
n=0

f (n)(z0)
n! zn.

And we have the Taylor series for general z0,

f(z) = f(z − z0 + z0) =
∞∑
n=0

f (n)(z0)
n! (z − z0)n.

�

Example 16.4. Find the Taylor series of f(z) = z2e3z centered at 0.
Notice f(z) is entire, so the power series always works. We know

ez =
∞∑
n=0

zn

n!

e3z =
∞∑
n=0

(3z)n

n!

z2e3z =
∞∑
n=0

3nzn+2

n! .

So

f(z) = 30z2

0! + 31z3

1! + 32z4

2! + · · ·

=
∞∑
n=2

3n−2zn

(n− 2)! .

This is our Taylor series.

Example 16.5. Find the Taylor series of sin(z) centered at π/2.
We know that the Taylor series should look something like

∞∑
n=0

(?)(z − π/2)n.
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From trigonometry we know sin(z) = cos(z − π/2). But we know the
the Taylor series

cos(z − π/2) =
∞∑
n=0

(z − π/2)2n

(2n)!

which is also the Taylor series we want.

Example 16.6. Find the Taylor Series for 1
z+4 centered at z = 0.

We will use the geometric series.
1

z + 4 = 1
4(1 + z

4 )

= 1
4 ·

1
1− (−z4 )

= 1
4

∞∑
n=0

(
−z
4

)n
for

∣∣−z
4
∣∣ < 1. In other words

1
z + 4 =

∞∑
n=0

(−1)nzn

4n+1 for |z| < 4.

Example 16.7. Find the Taylor series of f(z) = 1
z+4 centered at z = 2.

Rewriting f(z) we have

f(z) = 1
z + 4 = 1

6 + (z − 2) = 1
6 ·

1
1 + z−2

6
= 1

6 ·
1

1 +
(
−(z−2)

6

) .
Applying the geometric series

f(z) = 1
6 ·

1
1 +

(
−(z−2)

6

) = 1
6

∞∑
n=0

(
−(z − 2)

6

)n
when

∣∣∣−(z−2)
6

∣∣∣ < 1. Simplifying this we obtain the Taylor series

1
z + 4 =

∞∑
n=0

(−1)n(z − 2)n

6n+1 for |z − 2| < 6.

Remark 16.8. In the previous example we say that 6 is the radius of convergence.

Example 16.9. Find the Taylor series of f(z) = 1
z centered at 2i.
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First write f(z) as

f(z) = 1
z

= 1
z − 2i+ 2i = 1

2i
1

1−
(
−(z−2i)

2i

) .
And applying the geometric series formula

f(z) = 1
2i

1
1−

(
−(z−2i)

2i

)
= 1

2i

∞∑
n=0

(
−(z − 2i)

2i

)n
for

∣∣∣−(z−2i)
2i

∣∣∣ < 1. Simplifying this we have the Taylor series

1
z

=
∞∑
n=0

(−1)n (z − 2i)
(2i)n+1 for |z − 2i| < 2.

Example 16.10. Find the Taylor series for ez at −5i.
We can write

ez = ez+5i−5i = ez+5ie−5i.

Using the Maclaurin series we have

ez = ez+5ie−5i = ez+5i
∞∑
n=0

(z + 5i)n

n! .

Simplifying this we have the Taylor Series

ez =
∞∑
n=0

e−5i(z + 5i)n

n!
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17. Lecture 17: Laurent Series
17.1. Laurent Series. For example e1/z is not, analytic at z = 0, so Taylor series
doesn’t work at z = 0.

But we do have the power series

e1/z =
∞∑
n=0

( 1
z

)n
n! =

∞∑
n=0

1
n!zn .

This series works for z 6= 0. This is like Taylor series, but with negative powers
also. We call such a series a Laurent series.

Theorem 17.1 (Existence of Laurent Series). Suppose f(z) is analytic
in the annulus R1 < |z − z0| < R2.

Let C denote a positively oriented simple closed contour around z0 and
lying completely in the annulus.

Then we have the Laurent series

f(z) =
∞∑

n=−∞
Cn(z − z0)n

on R1 < |z − z0| < R2, and where

Cn = 1
2πi

∫
C

f(z)
(z − z0)n+1 dz.

Proof. Start with z0 = 0. Then fix z1 in the annulus as illustrated in this diagram:
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Choose r1 and r2 such that R1 < |z1| < r2 < R2. Let γ be a small circle around
z1. Then ∫

Cr2

f(z)
z − z1

dz −
∫
γ

f(z)
z − z1

dz −
∫
Cr1

f(z)
z − z1

dz = 0

since (if you go along the paths in a certain way) the interior of the path of inte-
gration is analytic with no singularities we use Cauchy-Goursat. In particular we
have ∫

γ

f(z)
z − z1

dz =
∫
Cr2

f(z)
z − z1

dz −
∫
Cr1

f(z)
z − z1

dz.

But by Cauchy’s integral formula,∫
γ

f(z)
z − z1

dz = 2πif(z1).

Thus

f(z1) = 1
2πi

∫
Cr2

f(z)
z − z0

dz − 1
2πi

∫
Cr1

f(z)
z − z1

dz

On Cr2 |z| > |z1| so

1
z − z1

= 1
z

z

z −
(
z1
z

) = 1
z

∞∑
n=0

(z1

z

)n
=
∞∑
n=0

zn1
zn+1 .

Conversely on Cr1 |z| > |z1| so,

−1
z1 − z

= 1
z1

1
1− z

z1

= 1
z1

∞∑
n=0

(
z

z1

)n
=
∞∑
n=0

zn

zn+1
1
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Rewriting this sum,
∞∑
n=0

zn

zn+1
1

= 1
z1

+ z

z2
1

+ z2

z3
1

+ · · ·

= z−1
1
1 + z−2

1
z−1 + z−2

1
z−1 + z−3

1
z−2 + · · ·

=
−1∑

n=−∞

zn1
zn+1 .

With these two series we can rewrite f(z1) as

f(z1) = 1
2πi

∫
Cr1

f(z)
∞∑
n=0

zn1
zn+1 dz + 1

2πi

∫
Cr2

f(z)
−1∑

n=−∞

zn1
zn+1 dz.

But we have that Cr1 = Cr2 since our series are both analytic on our annulus, so,

f(z1) =
∞∑
n=0

(
1

2πi

∫
C

f(z)
zn+1 dz

)
)zn1 .

And this is the Laurent series of f(z) centered at z0 = 0. For the Laurent series
centered a t a general z0 we can do a change of variables as we did in the Taylor
series proof. �

Example 17.2. Find the Laurent series of f(z) = 1
z−1 −

1
z−2 centered at

0.

We will end up with 3 series (due to locations of singularities). The
three series will be for |z| < 1, 1 < |z| < 2, and |z| > 2.
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CASE 1 (|z| < 1): For |z| < 1 we have

1
z − 1 = −1

1− z = −
∞∑
n=0

zn

for |z| < 1. Similarly

−1
z − 2 = 1

2− z = 1
2 ·

1
1− z

2
= 1

2

∞∑
n=0

(z
2

)n
=
∞∑
n=0

−zn

2n+1

for |z| < 2. So combining these,

1
z − 1 −

1
z − 2 =

∞∑
n=0

(
−1 + 1

2n+1

)
zn

for |z| < 1.

CASE 2 (1 < |z| < 2): For 1 < |z| < 2,

1
z − 1 = 1

z
· 1
z − 1

z

= 1
z

∞∑
n=0

(
1
z

)n
=
∞∑
n=0

1
zn+1

for |z| > 1. Notice by expanding this sum we can rewrite it,
∞∑
n=0

1
zn+1 = 1

z
+ 1
z2 + 1

z3 + · · ·

=
−1∑

n=−∞
zn.

For −1
z−2 we can use the sum from Case 1, since it was valid for |z| < 2.

Thus for 1 < |z| < 2.

f(z) = 1
z − 1 −

1
z − 2 =

−1∑
n=−∞

zn +
∞∑
n=0

1
2n+1 z

n.

CASE 3 (|z| > 2): For |z| > 2 we have

1
z − 1 =

−1∑
n=−∞

zn.

Also
−1
z − 2 = −1

z
· 1

1− 2
z

= −1
z

∑
n = 0∞

(
2
z

)n
.

Let us rewrite this sum
−1
z

∑
n = 0∞

(
2
z

)n
= −1

z
+ 2
z2 −

22

z3 −
23

z4 − · · ·

= −
−1∑

n=−∞

zn

2n+1 .



90 TRISTAN PHILLIPS

With these sums we find the following Laurent series for |z| > 2:

f(z) =
−1∑

n=−∞

(
1− 2−n−1) zn

From our general Laurent series we have

Cn = 1
2πi

∫
c

f(z)
(z − z0)n+1 dz.

And from this

C−1 = 1
2πi

∫
c

f(z)dz,

which we can rewrite as ∫
c

f(z)dz = 2πiC−1.

17.2. Properties of Taylor & Laurent series. We give a list of some useful
properties Taylor and Laurent series:

• Converges absolutely in a Circle/Annulus.
• We can add/subtract/derivative/antiderivative term by term.
• Unique for z0, in an annulus (possibly a circle).

Note that tho we can divide and multiply these series, it is quite difficult in practice.
Now we will show two different ways to find the Laurent series of 1

(1−z)2 . The
first way is straightforward; just split the function into 1

1−z ·
1

1−z . In the second
way we make the clever realization that 1

(1−z)2 = d
dz

(
1

1−z

)
.

Carrying out the ‘fist-way’ we have

1
(1− z)2 = 1

1− z ·
1

1− z

=
( ∞∑
n=0

zn

)( ∞∑
n=0

zn

)
= (1 + z + z2 + z3 + · · · )(1 + z + z2 + z3 + · · · )
= 1 + 2z + 3z2 + 4z3 + · · ·

=
∞∑
n=0

(n+ 1)zn.



COMPLEX ANALYSIS 91

The alternate way of deriving this Taylor series is by makeing the 1
(1−z)2 =

d
dz

(
1

1−z

)
:

1
(1− z)2 = d

dz

(
1

1− z

)
= d

dz

( ∞∑
n=0

zn

)

=
∞∑
n=0

nzn−1

= 0 + 1 + 2z + 3z2 + 3z2 + 4z3 + · · ·
Comparison of these two methods highlights the relative difficulty of multiplying

power series as compared to differentiating power series.
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18. Lecture 18: Series

Definition 18.1. A singular point, or singularity, of f(z) is a point
where f(z) is not analytic but it is on the boundary of the set where f(z)
is analytic.

Definition 18.2. An isolated singularity is a point where f(z) is not
analytic, but f(z) is analytic in the rest of a neighborhood.

Examples 18.3. :

• 1
z has an isolated singularity at z = 0.

• Log(z) with branch −π < θ < π has singularities along the nega-
tive real axis, but no isolated singularities.

Suppose f(z) is analytic on the ‘annulus’ (in this case more of a ‘punctured disk’)
0 < |z − z0| < R. We know f(z) has Laurent series

f(z) = · · ·+ C−2

(z − z0)2 + C−1

(z − z0) + C0 + C1(z − z0) + C2(z − z0)2 + · · ·

Referring to this Laurent series we make the following definition.

Definition 18.4. The C−1 coefficient of the Laurent series of f(z) (as
written above) is called the residue of f(z) at z0 and is denoted Res

z0
(f).

We have the formula

Res
z0

(f) = C−1 = 1
2πi

∫
C

f(z)dz

where C is a simple, closed, positively oriented contour around z0. We can rewrite
the above equation in a useful way:∫

C

f(z)dz = 2πi · Res
z0

(f).

Remark 18.5. One may wonder where the term ‘residue’ comes from.
If we consider taking the integral of the Laurent series, we can apply Cauchy

Goursat to most of the terms to find out that they disapear. The only term that
remains after integration is C1

z−z0
. In particular∫
C−1

z − z0
dz = 2πiC−1.

And we see that the residue is the only part left after integration.
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Example 18.6. Find
∫
C
z2 sin(1/z)dz where C is an origin centered cir-

cle.
Recal the Maclaurin series for sin:

sin(z) =
∞∑
n=0

(−1)n z2n+1

(2n+ 1)! .

Therefore

z2 sin(1/z) = z2
∑

n = 0∞(−1)n 1
z2n+1(2n+ 1)!

= z2
(

1
z · 1! −

1
z3 · 3! + 1

z5 · 5! −
1

z7 · 7! + · · ·
)

= z − 1
z · 3! + 1

z3 · 5! −
1

z5 · 7! + · · ·

From this we see that Res
0

= −1
3! = −1

6 . So,∫
C

z2 sin(1/z)dz = 2πi
(
−1
6

)
= −πi3 .

Example 18.7. Find the integral
∫
C
e1/z2

dz where C is an origin centered
circle.

Firstly, recall the familiar Maclaurin series for ez:

ez =
∞∑
n=0

zn

n! .

From this we have

e1/z2
=
∞∑
n=0

(1/z2)n

n!

= 1 + 1
z2 · 1! + 1

z4 · 2! + 1
z4 · 3! + · · · .

Therefore Res
0

= 0, and ∫
C

e(1/z2)dz = 0.

Example 18.8. Find the integral
∫
C

1
z(z−2)4 dz where C is a circle cen-

tered at 2 with radius 1.
There are singularities z = 0 and z = 2. However z = 2 is the only
singularity inside our contour.
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First we will find the power series for 1
z centered at 2:

1
z

= 1
2 + z − 2

= 1
2 ·

1
1−

(
−(z−1)

2

)
= 1

2

∞∑
n=0

(
−(z − 2)

2

)n
=
∞∑
n=0

(−1)n (z − 2)n

2n+1 .

And from this
1

z(z − 2)4 = 1
(z − 2)4

(
1
2 −

(z − 2)2

22 + (z − 2)2

23 − (z − 2)3

24 + · · ·
)

= 1
2(z − 2)4 −

1
22(z − 2)3 + 1

23(z − 2)2 −
1

24(z − 2) + 1
25 − · · · .

So, Res
2

(
1

z(z−2)4

)
= −1

24 = −1
16 . And∫

C

1
z(z − 2)4 dz = 2πi−1

16 = −πi8 .

Theorem 18.9 (Cauchy Residue Theorem). Let C be a simple, closed,
positively oriented contour. If f(z) is analytic on C, and analytic inside
C except for a finite number of points zk, then∫

C

f(z)dz = 2πi
∑
k

Res
zk

(f).

This theorem can be proved using deformation of contours.

Example 18.10. Find the integral
∫
C

5z−2
z(z−1)dz where C is an origin cen-

tered circle with radius 2.
We will want to find Res

0
and Res

1
. First lets find Res

0
. To do this we

find the power series of 1
z−1 :

1
z − 1 = −1

1− z = −
∞∑
n=0

zn.
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Then from this we have

5z − 2
z(z − 1) =

(
5z − 2
z

)(
−
∞∑
n=0

zn

)

= (5− 2
z

)(−1− z − z2 − z4 − · · · )

= (−5− 5z − 5z2 − 5z3 − · · · ) + (2
z

+ 2 + 2z + 2z2 + 2z3 + · · · )

and we see that Res
0

= 2.
We now find Res

1
. We have the following power series

1
z

= 1
1 + z − 1 =

∞∑
n=0

(−(z − 1))n =
∞∑
n=0

(−1)n(z − 1)n.

Also
5z − 2
z − 1 = 5z − 5 + 3

z − 1 = 5 + 3
z − 1 .

From these we have
5z − 2
z(z − 1) =

(
5 + 3

z − 1

)(
1− (z − 1) + (z − 1)2 − (z − 1)3 + · · ·

)
=
(
5− 5(z − 1) + 5(z − 1)2 − 5(z − 1)3 + · · ·

)
+
(

3
z − 1 − 3 + 3(z − 1)− 3(z − 1)2 + · · ·

)
.

Thus Res
1

= 3.
From the two residues we found we have∫

C

5z − 2
z(z − 1)dz = 2πi(2 + 3) = 10πi.

18.1. Partial Fractions. A tool that often helps in finding residues is partial
fraction decomposition. For example in the previous example we could have used
partial fractions to find

5z − 2
z(z − 1) = 2

z
+ 3
z − 1 .

Immediately from this we see that the residues are 2 and 3.



96 TRISTAN PHILLIPS

19. Lecture 19: Singularities
19.1. Types of Singularities. Say we have the Laurent series

f(z) = · · ·+ C−3

(z − z0)3 + C−2

(z − z0)2 + C−1

(z − z0) +
∞∑
n=0

Cn(z − z0)n.

• If lowest power term is C−m we say that there is a Pole of Order m.
• A pole of order 1 is also called a Simple Pole.
• If infinitely many negative power terms we say that we have an Essential

Singularity.
• If there are no negative power terms we have a Removable Singularity.

Example 19.1. What are the singularities of f(z) = e1/z

(z−1)3(z+5)?
The singularities are
• An essential singularity z = 0.
• A pole of order 3 at z = 1.
• A simple pole at z = −5.

19.2. Residues at Poles.

Theorem 19.2. f(z) has a pole of order m at z0 if and only if

f(z) = φ(z)
(z − z0)m

for φ(z) an analytic function such that φ(z0) 6= 0. Then
φm−1(z0)
(z − z0)!

for a simple pole, Res
z0

= φ(z0).

Proof. (⇒) Assume we have a pole of order m, then

f(z) = C−m
(z − z0)m +

C−(m−1)

(z − z0)m−1 + · · ·

= 1
(z − z0)m

(
C−m + C−(m−1)(z − z0) + · · ·

)︸ ︷︷ ︸
Taylor series for φ(z).

And we see that φ(z) is analytic (since it has no negative powers) and that φ(z0) =
C−m 6= 0.
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(⇐) We have

f(z) = φ(z)
(z − z0)m

= 1
(z − z0)m

(
d0 + d1(z − z0)2 + · · ·+ dm−1(z − z0)m−1 + dm(z − z0)m + · · ·

)
= d0

(z − z0)m + d1

(z − z0)m−1 + d2

(z − z0)m−2 + · · ·+ dm−1

(z − z0) + dm + · · · .

From this we see that z0 is a pole of order m and also

Res
z0

(f) = dm−1 = φ(m−1)(z0)
(m− 1)!

since dm−1 is the m− 1 term in the Taylor series of φ(z). �

Example 19.3. Find the residues of f(z) = z+1
z2+9 .

We can rewrite f as

f(z) = z + 1
(z − 3i)(z + 3i) .

This makes it clear that the singularities of f(z) are ±3i. Finding the
residues we have

Res
3i

(
(z + 1)/(z + 3i)

(z − 3i)

)
= φ(3i)

0! = 3i+ 1
6i

where φ(z) = z+1
z+3i . Similarly

Res
−3i

(
(z + 1)/(z − 3i)

z + 3i

)
= φ(−3i)

0! = 1− 3i
−6i

where φ(z) = z+1
z−3i .

Example 19.4. Find the residues for cos(z)
z2(z+2) .

We have singularities at 0 and −2. The singularity at 0 is a pole of order
2. Finding its residue

Res
0

(
cos(z)/(z + 2)

z2

)
= φ′(0)

1!
where φ(z) = cos(z)/(z + 2) and thus

φ′(z) = − sin(z)(z + 2)− cos(z)
(z + 2)2 ⇒ φ′(0) = − sin(0)(2)− cos(0)

(2)2 .

The other singularity is just a simple pole, so

Res
−2

(
cos(z)/z2

z + 2

)
= φ(−2) = cos(−2)

4

where φ(z) = cos(z)
z2 .
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19.3. zeros.

Definition 19.5. f(z) is said to have a zero of order m at z0 if
f(z0) = f ′(z) = f ′′(z) = · · · = f (m−1)(z0) = 0,

but f (m)(z0) 6= 0.

Example 19.6. z3 has a zero of order 3 at z = 0 since
f(z) = z3 → f(0) = 0
f ′(z) = 2z2 → f ′(0) = 0
f ′′(z) = 4z → f ′′(0) = 0
f ′′′(z) = 4→ f ′′′(0) = 4.

Theorem 19.7. A analytic function f(z) has a zero of order m at z0 if
and only f(z) = (z − z0)mg(z) for some analytic function g(z) such that
g(z0) 6= 0.

Proof. We have the Taylor series
f(z) = c0 + c1(z − z0) + c2(z − z0)2 + · · ·+ cm(z − z0)m + · · ·

where cm = f(m)(z0)
m! . All terms of the taylor sere is up to the term with power

m− 1 are equal to 0. �

Remark 19.8. This theorem implies the uniqueness theorem. This is because
saying f = g on an open set of a line is the same as saying f − g = 0. If the zero is
of order m, then f − g = (z − z0)nh(z) where h(z) is analytic and h(z0) 6= 0.

Theorem 19.9. Let p(z) and q(z) be analytic at z = z0 and also have
p(z0) 6= 0 and q(z) have a zero of order m at z0. Then p(z)/q(z) has a
pole of order m at z0.

Example 19.10. What is the order of the pole at z = 0 in 1
z(ez−1)?

Let q = z(ez − 1). We know q(0) = 0. Also
q′(z) = 1(ez − 1) + zez → q′(0) = 0
q′′(z) = ez + ez + zez → q′′(0) = 2.

Thus 1
z(ez−1) has a pole of order 2 at 0.
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Theorem 19.11. Let p(z) and q(z) be analytic at z0 with p(z0) 6= 0 and
q′(z0) 6= 0 (i.e. q is a zero of order 1). Then Res

z0

(
p
q

)
= p(z0)

q′(z0) .

Proof. We have q(z) = (z−z0)g(z), then g(z) is analytic at z0 and g(z0) 6= 0. Then
p

q
= p(z)

(z − z0)g(z) .

So by the previous theorem,
p(z)
q(z) = (p(z)/g(z))

z − z0

and
Res
z0

(
p

q

)
= φ(z0) = p(z0)

g(z0) .

But,
q(z) = (z − z0)g(z)
q′(z) = 1 · g(z) + (z − z0)g′(z),

so q′(z0) = g(z0) + 0. Thus

Res
z0

(p/q) = p(z0)
g(z0) = p(z0)

q′(z0) .

�

Example 19.12. Find the residues of z+1
z2+9 .

Firstly note that the singularities are at ±3i. Using the previous theo-
rem, letting p = z + 1 and q = z2 + 9, we have

Res
3i

= p(3i)
q′(3i) = 3i+ 1

2(3i)

Res
−3i

= p(−3i)
q′(−3i) = −3i+ 1

2(−3i) .

If you try this method and q′(z0) = 0 then this means that z0 is not a simple
pole and you will have to use a different method to find the residue.

Example 19.13. Find Res
0

(cot(z)).
Using the p/q′ method with p = cos(z) and q = sin(z),

Res
0

(cot(z)) = Res
0

(
cos(z)
sin(z)

)
= cos(0)

sin′(0) = 1
cos(0) = 1

1 = 1.
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20. Lecture 20: Inproper Integrals
In calculus ∫ ∞

0
f(x)dz = lim

R→∞

∫ R

0
f(x)dx.

Similarly ∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

k

f(x)dx+ lim
R→∞

∫ k

−R
f(x)dx.

We will now give a technique for solving improper integrals which uses complex
analysis. This technique is best illustrated thru examples.

Example 20.1. Find
∫∞

0
x2

x6+1dx = limR→∞
∫ R

0
x2

x6+1dx.
Consider the contour C = C+∪CR∪C− where C+ is the integral from

the origin to R along the real axis, CR is the origin centered half circle
with radius R lying in the upper half-plane, and C− is the contour from
−R to the origin along the real axis. These contours are illustrated in the
following diagram.

Note that we have the following equality of (complex) integrals,∫
C

z2

z6 + 1dz =
∫
C+

z2

z6 + 1dz +
∫
CR

z2

z6 + 1dz +
∫
C−

z2

z6 + 1dz.

Also,
z6 + 1 = 0⇒ z6 = −1 = ei(π+2πk)

z = ei(π/6+2πk/6).

Therefore the singularities of z2

z6+1 which are inside C are eiπ/6, i, and
ei5π/6. And so ∫

C

z2

z6 + 1 = 2πi
(

Res
eiπ/6

+ Res
i

+ Res
ei5π/6

)
.
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Using the p/q′ method:
p

q′
= z2

6z5 = 1
6z3 .

Substituting this into our formula for the integral around C,∫
C

z2

z6 + 1 = 2πi
(

1
6ei3π/6

+ 1
6i3 + 1

6ei15π/6

)
= 2πi

(
1
6i −

1
6i + 1

6i

)
= π

3 .

Now lets find the integral along C−. To do this we will use the parametriza-
tion z = −t for 0 ≤ t ≤ R and dz = (−1)dt to obtain∫

C−

z2

z6 + 1dz = 0
∫
C−

(−t)2

(−t)6 + 1(−1)dt

=
∫ R

0

t2

t6 + 1dt

=
∫ R

0

x2

x6 + 1dx.

Notice that we have the integral on C− in terms of the integral we want to
find. Now we will fin the integral on CR. We will use the M · L method,∣∣∣∣∫

CR

z2

z6 + 1dz
∣∣∣∣ ≤M · L

for L = 2π (the length of CR. Also, on CR, |z2| = R2 and |z6 + 1| ≥∣∣|z|6 − 1
∣∣ = R6 − 1. Therefore∣∣∣∣ z2

z6 + 1

∣∣∣∣ ≤ R2

R6 − 1 = M.

Therefore ∣∣∣∣∫
CR

z2

z6 + 1dz
∣∣∣∣ ≤M · L = πR3

R6 − 1 .

And as R → ∞ this expression goes to zero (because the power is higher
in the denominator than the numerator). From this we must have∫

CR

z2

z6 + 1dz = 0.

So we have∫
C

z2

z6 + 1dz =
∫
C+

z2

z6 + 1dz +
∫
CR

z2

z6 + 1dz +
∫
C−

z2

z6 + 1dz

π

3 = 2
∫ ∞

0

x2

x6 + 1dx.

So as R→∞
π

3 = 2
∫ ∞

0

x2

x6 + 1dx.
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And finally we get an expression for the improper integral∫ ∞
0

x2

x6 + 1dx = π

6 .

Example 20.2. Evaluate
∫∞

0
x

x4+1dx = limR→∞
∫ R

0
x

x4+1dx.
This will be fairly similar to the previous example except we will use a

slightly different contour. We will use C = C+∪CR∪C− where C+ is the
contour from the origin to R along the real axis, CR is the quarter circle
in the first quadrant of the complex plane, and C− is the contour from iR
to the origin along the imaginary axis. These contours are illustrated in
the following diagram.

From these contours we have∫
C

z

z4 + 1dz =
∫
C+

z

z4 + 1dz +
∫
CR

z

z4 + 1dz +
∫
C−

z

z4 + 1dz.

Since
z4 + 1 = 0

z4 = −1 = ei(π+2πk)

z = ei(π/4+2πk/4)

the singularities of z
z4+1 are z = ei(π/4+2πk/4). However only 1 of these

4 singularities is inside C, namely eiπ/4. So
∫
C

z
z4+1dz = 2πiRes

eiπ/4
. Using

the p/q′ method,
p

q′
= z

4z3 = 1
4z2
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So ∫
C

z

z4 + 1 = 2πiRes
eiπ/4

= 2πi
(

1
4
(
eiπ/4

)2
)

= 2πi 1
4eiπ/2

= 2πi
4i

= π

2 .

Now lets find our integral along C−. To do this we can parametrize C−
as z = it for 0 ≤ t ≤ R. Using this parametrization we have∫

C−

z

z4 + 1dz = −
∫ R

0

it

(it)4 + 1 idt =
∫ R

0

t

t4 + 1dt =
∫ R

0

x

x4 + 1dx.

Now lets find the integral along the contour CR. We can find a bound∣∣∣∣∫
CR

z

z4 + 1dz
∣∣∣∣ = M · L

where L = π
2R (the length of CR). Also |z|+R and |z4 + 1| ≥ |z|4− |1| =

R4 − 1. From this we can take M to be R
R4−1 . Therefore∣∣∣∣∫

CR

z

z4 + 1dz
∣∣∣∣ ≤M · L = R2π

2R4 − 2
which equals zero R→∞. So from∫

C

z

z4 + 1dz =
∫
C+

z

z4 + 1dz +
∫
CR

z

z4 + 1dz +
∫
C−

z

z4 + 1dz

π

2 = 2
∫ R

0

z

z4 + 1dz +
∫
CR

z

z4 + 1dz,

taking the limit as R→∞, we have
π

2 = 2
∫ ∞

0

x

x4 + 1dx.

We find our solution ∫ ∞
0

x

x4 + 1dx = π

4 .

Example 20.3. Evaluate
∫∞

0
1

xn+1dx for an integer n ≥ 2.
Use the contour C = C+ ∪ CR ∪ C− as illustrated here:
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Then we will have the equation∫
C

1
zn + 1dz =

∫
C+

1
zn + 1dz +

∫
CR

1
zn + 1dz +

∫
C−

1
zn + 1dz.

The singularities of 1
zn+1 are the zs satisfying zn = −1, which are z =

eπ/n+2πk/n. Only one of these n singularities will end up being inside C;
namely eiπ/n. By the p/q′ method we have p

q′ = 1
nzn−1 . And so∫

C

1
zn + 1dz = 2πi

(
1

ne
iπ(n−1)

n

)
= 2πi

n
· 1
eiπ−

1π
n

= −2πi
n

e
iπ
n .

Now lets find
∫
C−

1
zn+1dz. We can parametrize C− as z = tei2π/n for

0 ≤ t ≤ R and thus dz = ei2π/ndt. Using this parametrization we can
compute the integral∫

C−

1
zn + 1dz = −

∫ R

0

1(
tei2π/n

)n + 1
ei2π/ndt

= −
∫ R

0

1
tn + 1e

i2π
n dt

= −e i2πn
∫ R

0

1
xn + 1dx.

So we have∫
C

1
zn + 1dz = 2

∫
C+

1
zn + 1dz +

∫
CR

1
zn + 1dz +

∫
C−

1
zn + 1dz

⇒ −2πi
n

eiπ/n =
(

1− ei2π/n
)∫ R

0

1
xn + 1dx+

∫
CR

1
zn + 1dz.

So we must find
∫
CR

1
zn+1dz. Firstly notice∣∣∣∣∫

CR

1
zn + 1dz

∣∣∣∣ ≤M · L
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where L = 2πR/n and∣∣∣∣ 1
zn + 1

∣∣∣∣ ≤ 1
|z|n − 1 = 1

Rn − 1 = M.

Then ∣∣∣∣∫
CR

1
zn + 1dz

∣∣∣∣ ≤M · L = 2πR
n(Rn − 1)

However, if n > 1 then as R→∞ this goes to zero. (Recall n ≥ 2 in our
example so this goes to zero). So then we must have (as R→∞)

−2πi
n

eiπ/n =
(

1− ei2π/n
)∫ R

0

1
xn + 1dx+

∫
CR

1
zn + 1dz

⇒ −2πi
n

eiπ/n =
(

1− ei2π/n
)∫ ∞

0

1
xn + 1dx+ 0.

Therefore ∫ ∞
0

1
xn + 1dx = −2πieiπ/4

n(1− ei2π/n

= −2πieiπ/n

n(1− ei2π/n)

= 2πieiπ/n

n
(
eiπ/n − 1

)
= 2πi
n
(
eiπ/n − e−iπ/n

)
= π

n sin
(
π
n

) .
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21. Lecture 21: Jordan’s Lemma and Inproper
Integrals

21.1. Jordan’s Lemma.

Theorem 21.1 (Jordan’s Inequality).∫ π

0
e−k sin θdθ <

π

k

for k > 0.

Proof. We want to replace −k sin θ with something we can integrate. Recall what
the curve sin θ looks like:

Also notice ∫ π

0
e−k sin θdθ = 2

∫ π/2

0
e−k sin θdθ.

Consider the line y = 2
π θ. This line, illustrated as the dashed line in the following

diagram, is a lower bound for sin θ.
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That is 2
π θ ≤ sin θ for 0 ≤ θ ≤ π/2. Thus −k 2

π θ ≥ −k sin θ and e−k
2
π θ ≥ e−k sin θ.

So,

2
∫ π/2

0
e−k sin θdθ < 2

∫ π/2

0
e−k

2
k

2
π θdθ

< 2
(
−π
2k e

−k2
π θ
∣∣∣π2
0

)
<
−π
k
e−k + π

k
· 1

<
π

k
.

�

Theorem 21.2 (Jordan’s Lemma). Let f(z) be an analytic function in
the upper half plane outside of |z| = R. If...

• CR = z = Reiθ for 0 ≤ θ ≤ π.

• On CR, |f(z)| ≤MR and limR→∞MR = 0.

• a is a positive real number
Then,

lim
R→∞

∣∣∣∣∫
CR

eiazf(z)dz
∣∣∣∣ = 0.

Proof. We have ∣∣∣∣∫
CR

eiazf(z)dz
∣∣∣∣ =

∣∣∣∣∫ π

0
eiaRe

iθ

f(Reiθ)iReiθdθ
∣∣∣∣ .

But,
iaReiθ = iaR(cos θ + i sin θ) = iaR cos θ − aR sin θ.

Thus ∣∣∣∣∫ π

0
eiaRe

iθ

f(Reiθ)iReiθdθ
∣∣∣∣ =

∣∣∣∣∫ π

0
eiaR cos θe−iaR sin θf(Reiθ)iReiθdθ

∣∣∣∣ .
Then we have the inequality∣∣∣∣∫ π

0
eiaR cos θe−iaR sin θf(Reiθ)iReiθdθ

∣∣∣∣ ≤ ∫ π

0
1·e−a sin θMRRdθ = MRR

∫ π

0
e−aR sin θdθ.

By Jordan’s inequality

MRR

∫ π

0
e−aR sin θdθ ≤MRR

π

aR
= MR

π

a
.

But now
lim
R→∞

∣∣∣∣∫ eiazf(z)
∣∣∣∣ ≤ lim

R→∞
MR

π

a
= 0.

�
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Example 21.3. Calculate
∫∞

0
cos(x)
1+x2 dx = limR→∞

∫ R
0

cos(x)
1+x2 dx.

We consider the complex integral∫
C

eiz

1 + z2 dz =
∫
C+

eiz

1 + z2 dz +
∫
CR

eiz

1 + z2 dz +
∫
C−

eiz

1 + z2 dz

where C = C+ ∪ CR ∪ C− as illustrated:

We have singularities at ±i, but only i is inside our contour C. Finding
the residue we have Res

i
= p(i)/q′(i) where

p

q
= eiz

1 + z2 ⇒ p

q′
= eiz

ez
⇒ Res

i
= ei·i

2i = 1
2ie .

So, ∫
C

eiz

1 + z2 dz = 2πiRes
i

= π

e
.

We also have ∫
C+

eiz

1 + z2 dz =
∫ R

0

eix

1 + x2 dx.

Additionally by parametrizeing C− as z = −t for 0 ≤ t ≤ R we have∫
C−

eiz

1 + z2 dz = −
∫ R

0

ei(−t)

1 + (−t)2 (−1)dt =
∫ R

0

e−it

1 + t2
dt.

For the integral along CR note

lim
R→∞

∣∣∣∣ 1
1 + z2

∣∣∣∣ ≤ lim
R→∞

1
R2 − 1 = 0.

Thus we can apply Jordan’s Lemma to obtain

lim
R→∞

∣∣∣∣∫
CR

eiz
1

1 + z2

∣∣∣∣ = 0.

From these integrals we have just found we have the equation
π

e
=
∫ R

0

eix

1 + x2 dx+
∫ R

0

e−ix

1 + x2 dx+
∫
CR

eiz

1 + z2 dz.
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Taking the limit of this equation as R→∞,
π

e
=
∫ ∞

0

eix + e−ix

1 + x2 dx+ 0.

But notice eix+e−ix = (cos(x) + i sin(x))+(cos(x)− i sin(x)) = 2 cos(x),
thus

π

e
=
∫ ∞

0

2 cos(x)
1 + x2 dx.

And from this we get our solution∫ ∞
0

cos(x)
1 + x2 dx = π

2e .

Example 21.4. limR→∞
∫ R
−R

x sin(x)
x2+2x+2dx.

Consider the following contour:

Then we have the equation of integrals∫
C

zeiz

z2 + 2x+ 2dz =
∫ R

−R

xeix

x2 + 2x+ 2dx+
∫
CR

zeiz

z2 + 2z + 2dz.

The solutions to 4z2+2z+2 = 0 are z = −1±i, which are the singularities
of zeiz

z2+2x+2 . However, only −1 + i is in C. We cand find Res
−1+i

with the
p/q′ method:

p

q′
= zeiz

2z + 2 ,

Res
−1+i

= (−1 + i)ei(−1+i)

2(−1 + i) + 2 = (−1 + i)e−i−1

2i .

It follows that∫
C

zeiz

z2 + 2z + 2 = 2πi
(

(−1 + i)e−i−1

2i

)
< π(−1 + i)e−i−1.
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To find the integral on CR first consider the inequality
|z2 + 2z + 2| ≥ R2 − 2R− 2.

So ∣∣∣∣ z

z2 + 2z + 2

∣∣∣∣ ≤ R

R2 − 2R− 2 .

But limR→∞
R

R2−2R−2 = 0, since the power of R in the denominator is
higher then the power of R in the numerator. Thus by Jordan’s Lemma
we can find that

lim
R→∞

∫
CR

eiz
z

z2 + 2z + 2 = 0.

From the integrals we’ve found we have

π(−1 + i)e−i−1 =
∫ R

−R

xeix

x2 + 2x+ 2 +
∫
CR

zeiz

z2 + 2z + 2dz.

Takeing the limit of this equation as R→∞,

π(−1 + i)e−i−1 = lim
R→∞

∫ ∞
−∞

x cos(x) + i sin(x)
x2 + 2x+ 2 dx.

With some algebra we have∫ ∞
−∞

x cos(x)
x2 + 2x+ 2dx+ i

∫ ∞
−∞

x sin(x)
x2 + 2x+ 2dx = π

e
(− cos(1) + sin(1))

= i
π

e
(cos(1) + sin(1)).

Thus, ∫ ∞
−∞

x sin(x)
x2 + 2x+ 2dx = π

e
(cos(1) + sin(1)).

Example 21.5. Compute the integral
∫∞

0
cos(x)

(x2+4)2 dx. We will use the
contour C = C+ ∪ CR ∪ C− where C+ is the contour from the origin to
R along the real line, CR is the origin centered half-circle contour with
radius R, and C− is the contour from −R to the origin along the real axis.
Considering this contour we have the equation∫
C

eiz

(z2 + 4)2 dz =
∫
C+

eiz

(z2 + 4)2 dz+
∫
CR

eiz

(z2 + 4)2 dz =
∫
C−

eiz

(z2 + 4)2 dz.

Notice that the zeros of z2 + 4 coincide with the singularities of eiz

(z2+4)2

and are ±2i; however only 2i is in our contour. Now we will use the φ
method of finding the residue at 2i. Doing some algebra,

eiz

(z2 + 4)2 = eiz

(z − 2i)2(z + 2i)2 = eiz/(z + 2i)2

(z − 2i)2

Let φ(z) = eiz

(z+2i)2 . Then

φ′(z) = ieiz(z + 2i)− 2eiz

(z + 2i)3 .
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Thus
Res
2i

= φ′(2i) = ie−2(4i)− 2e−2

(4i)3 = −6e−2

−64i .

And thus∫
C

eiz

(z2 + 4)2 dz = 2πiRes
2i

= 2πi
(
−6e−2

−64i

)
= π6e−2

32 = 3π
16e2 .

For the integral about the contour C+,∫
C+

eiz

(z2 + 4)2 dz = eiz

(x2 + 4)2 dx.

For the integral around C− we use the parametrization z = −t for 0 ≤
t ≤ R. Then ∫

C−

eiz

(z2 + 4)2 dz =
∫ R

0

e−t

(t2 + 4)2 dt.

For the integral on CR notice that∣∣∣∣ 1
(z2 + 4)2

∣∣∣∣ ≤ 1
(R− 4)2 .

But, limR→∞
1

(R−4)2 = 0, since clearly the denominator is growing faster
than the (constant) numerator. Thus by and application of Jordans lemma
we can find

lim
R→∞

∫
CR

eiz
1

(z2 + 4)2 dz = 0.

Therefore, combining the integrals we have found, we have
3π

16e2 =
∫ R

0

eix + e−x

(x2 + 4)2 dx+
∫
CR

eiz

(z2 + 4)2 dz.

Taking the limit of this equation as R→∞,
3π

16e2 =
∫ ∞

0

2 cos(x)
(x2 + 4)2 dz.

In particular, this implies∫ ∞
0

cos(x)
(x2 + 4)2 dx = 3π

32e2 .
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22. Lecture 22: More Inproper Integrals

Example 22.1. Compute the integral
∫∞

0
ln(x)
x2+4dx.

We will consider the complex integral
∫ R
ρ

log(z)
z2+4 dz, using the branch

−π/2 < θ < 3π/2. We will use the contour C = C+ ∪ CR ∪ C− ∪ Cρ:

From this contour we have the equation∫
C

log(z)
(z2 + 4)2 dz =

∫
C+

log(z)
(z2 + 4)2 dz+

∫
CR

log(z)
(z2 + 4)2 dz+

∫
C−

log(z)
(z2 + 4)2 dz+

∫
Cρ

log(z)
(z2 + 4)2 dz.

Rewriting log(z)
(z2+4)2 as log(z)

(z−2i)2(z+2i)2 , we see that the singularities of this
function lie at ±2i with only 2i inside the contour C. Using the φ method
to find the residue

Res
2i

= Res
2i

(
log(z)

(z + 2i)2

)
= φ′(2i)

where φ(z) = log(z)/(z + 2i)2 and thus

φ′(z) = (1/z)(z + 2i)− log(z) · 2 · (z + 2i)
(z + 2i)4 .

Therefore

Res
2i

= φ′(2i) = (1/2i)(2i+ 2i)− log(2i) · 2 · (2i+ 2i)
(2i+ 2i)4

= 2− 2(ln(2) + iπ/2)
−64i

= 1− (ln(2) + iπ/2)
−32i .
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Thus, ∫
C

log(z)
z2 + 4)2 dz = 2πiRes

2i

= 2πi
(

1− ln(2)− iπ/2
−32i

)
= π(2− 2 ln(2)− 2 + iπ)

−32

= π(2 ln(2)− 2 + iπ)
32 .

For the integral on C+ we have∫
C+

log(z)
(z2 + 4)2 =

∫ R

ρ

ln(z)
x2 + 4)2 dx.

For the integral on C− we parametrize C− as z = −t for ρ ≤ t ≤ R. Then∫
C−

log(z)
(z2 + 4)2 dz = −

∫ R

ρ

log(−t)
((−t)2 + 4)2 (−1)dt =

∫ R

ρ

log(−t)
(t2 + 4)2 dt.

And noticing that log(−t) = ln(t) + iπ,∫ R

ρ

log(−t)
(t2 + 4)2 dt =

∫ R

ρ

log(t) + iπ

(t2 + 4)2 dt.

To find our integral on CR we consider the bound∣∣∣∣∫
CR

log(z)
(z2 + 4)2 dz

∣∣∣∣ ≤M · L
where L = πR is the length of the contour and from
|(z + 42| ≥ (R2 − 4)2 and |log(z)| = | ln((R) + iθ| ≤ ln(R) + π

we have
M = ln(R) + π

(R2 − 4)2 .

Thus ∣∣∣∣∫
CR

log(z)
(z2 + 4)2 dz

∣∣∣∣ ≤ πR ln(R) + π2R

(R2 − 4)2 .

And taking the limit of this inequality as R→∞:

lim
R→∞

∣∣∣∣∫
CR

log(z)
(z2 + 4)2 dz

∣∣∣∣ ≤ lim
R→∞

πR ln(R) + π2R

R4 − 8R2 + 16

≤ lim
R→∞

π ln(R) + π2

4R3 − 16R

≤ lim
R→∞

π/R

12R2 − 16 = 0

In particular this implies

lim
R→∞

∫
CR

log(z)
(z2 + 4)2 dz = 0.
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For the integral on Cρ consider the inequality∣∣∣∣∣
∫
Cρ

log(z)
(z2 + 4)2 dz

∣∣∣∣∣ ≤M · L
for L = πρ and

M = π − ln ρ
(4− ρ2)2 ≤

log(z)
(z2 + 4)2 .

Using these L and M we get∣∣∣∣∣
∫
Cρ

log(z)
(z2 + 4)2 dz

∣∣∣∣∣ ≤ π2ρ− πρ ln(ρ)
(4− ρ2)2 .

But, from repeated use of L’Hospital’s rule,

lim
ρ→0+

ρ ln(ρ) = lim
ρ→0+

ln(ρ)
ρ−1

= lim
ρ→0+

ρ−1

−ρ−2

= lim
ρ→0+

−ρ = 0.

Using this we have

lim
ρ→0+

π2ρ− πρ ln(ρ)
(4− ρ2)2 = lim

ρ→0+

0− 0
(4− 0)2 = 0.

Combining the integrals we’ve found we have

π

(
2 ln(2)− 2 + iπ

32

)
=
∫ R

ρ

2 ln(x) + iπ

(x2 + 4)2 dx+
∫
CR

2 ln(x) + iπ

(x2 + 4)2 dx+
∫
Cρ

2 ln(x) + iπ

(x2 + 4)2 dx.

Taking the limit of this expression as R→∞ and ρ→ 0 we get
2π ln(2)− 2

32 + i
π2

32 =
∫ ∞

0

2 ln(x) + iπ

(x2 + 4)2 dx.

So,
2π ln(2)− 2

32 =
∫ ∞

0

2 ln(x)
(x2 + 4)2 dx.

This implies
π ln(2)− π

32 =
∫ ∞

0

ln(x)
(x2 + 4)2 dx.

Example 22.2. Compute
∫∞

0
za

(z+1)2 dx for a ∈ R.
We will use the contour C = C+ ∪ C− ∪ CR ∪ Cρ as illustrated here:
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There is a singularity at −1, which is inside of C. Finding its residue,

Res
−1

(
za

(z + 1)a

)
= φ′(−1)

= a(−1)a−1

= ae(a−1)(log(−1)

= aeiπ(a−1)

= ae0aπe−iπ

= −aeiaπ.
So, ∫

C

za

(z + 1)2 dz = 2πiRes
−1

(
za

(z + 1)a

)
= 2πi(−aeiaπ).

For integral on the contour C+ we have∫
C+

za

(z + 1)2 =
∫ R

ρ

xa

(x+ 1)a dx.

As for the contour C−, consider the parametrization z = tei2π. Then∫
C−

za

(z + 1)2 dz = −
∫ R

ρ

(ei2πt)a

(ei2πt+ 1)2 e
i2πdt

= −
∫ R

ρ

ei2πata

(t+ 1)2 dt

= −ei2πa
∫ R

ρ

xa

(x+ 1)2 dx.

For the contour CR consider the inequality∣∣∣∣∫
CR

za

(z + 1)2 dz

∣∣∣∣ ≤M · L
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where L = 2πR and M = R2

(R−1)2 so that∣∣∣∣∫
CR

za

(z + 1)2 dz

∣∣∣∣ ≤ 2πRa+1

(R− 1)2 .

But notice that
lim
R→∞

= 0

when a+ 1 < 2 (or equivalently a < 1). Thus for a < 1∣∣∣∣∫
CR

za

(z + 1)2 dz

∣∣∣∣ ≤ 0⇒
∫
CR

za

(z + 1)2 dz = 0.

For Cρ we use a similar method to the CR case. We start with the
inequality ∣∣∣∣∣

∫
Cρ

za

(z + 1)2 dz

∣∣∣∣∣ ≤M · L
where this time we have L = 2πρ and M = ρa

(1−ρ)2 so that ML = 2πρa+1

(1−ρ)2 .
Now we have

lim
ρ→0

ML = 0

when a+ 1 > 0 (or equivalently a > −1). Thus for a > −1∣∣∣∣∣
∫
Cρ

za

(z + 1)2 dz

∣∣∣∣∣ ≤ 0⇒
∫
Cρ

za

(z + 1)2 dz = 0.

From the integrals we have found we can deduce that when −1 < a < a,
and a 6= 0 we will have∫ ∞

0

xa

(x+ a)2 dx = 2πi(−aeiaπ)
(1− ei2πa) = πa

sin(πa) .


