1.2 Homework Solutions

(10) Consider the system consisting of all elements of the form $a+b \sqrt{5}$, where a and b are any rational numbers. Show that all 11 axioms of 1.1 are valid (using the usual rules for addition and multiplication), hence this system forms a field.

In the following, we will repeatedly use the fact that the rational numbers are a field, which was stated in class. Note, most of these axioms hold simply because all elements are real and the normal 0 and 1 belong. Only A1, M1 and M5 are not immediately clear.

$$
\mathrm{A} 1-(a+b \sqrt{5})+(c+d \sqrt{5})=(a+c)+(b+d) \sqrt{5}
$$

A2 - Since both $(a+b \sqrt{5})$ and $(c+d \sqrt{5})$ are real, they commute, so $(a+b \sqrt{5})+(c+d \sqrt{5})=$ $(c+d \sqrt{5})+(a+b \sqrt{5})$.
A3 - As in A2, all elements are real and so A3 holds here as well.
A4 - Since 0 for the real numbers can be written $0+0 \sqrt{5}$ (and 0 is rational), it is in the system.
A5 - If a and b are rational, so are $-a$ and $-b$. Therefore $-(a+b \sqrt{5})=-a+(-b) \sqrt{5}$ is in the system.
M1 $-(a+b \sqrt{5})(c+d \sqrt{5})=(a c+5 b d)+(a d+b c) \sqrt{5}$. Since $a, b, c, d, 5$ are rational, $a c+5 b d$ and $a d+b c$ are rational and $(a c+5 b d)+(a d+b c) \sqrt{5}$ is in the system.
M2, M3 - All elements are real so M2/M3 hold.
M4 - Since 1 for the real numbers can be written $1+0 \sqrt{5}$ (and 0,1 are rational), it is in the system.
M5 -

$$
\begin{aligned}
\frac{1}{a+b \sqrt{5}} & =\frac{1}{a+b \sqrt{5}} \cdot \frac{a-b \sqrt{5}}{a-b \sqrt{5}} \\
& =\frac{a-b \sqrt{5}}{a^{2}-5 b^{2}} \\
& =\frac{a}{a^{2}-5 b^{2}}+\frac{-b}{a^{2}-5 b^{2}} \sqrt{5}
\end{aligned}
$$

We see that $\frac{1}{a+b \sqrt{5}}$ is in the system UNLESS $a^{2}=5 b^{2}$, in which case it is undefined. Luckily $a^{2}=5 b^{2}$ has no solutions where both a and b are rational, so the reciprocal is defined for all elements in the system.
D - All elements are real so D holds.

