1.3 Homework Solutions

(17) Find the solution set of the inequality

$$\frac{x+2}{x-1} < 4$$

The solution set $S = S_1 \cup S_2$, where $S_1 = \{x : \frac{x+2}{x-1} < 4 \text{ and } x - 1 > 0\}$ and $S_2 = \{x : \frac{x+2}{x-1} < 4 \text{ and } x - 1 < 0\}$.

 (S_1)

$$\frac{x+2}{x-1} < 4 \quad and \quad x-1 > 0$$

$$x+2 < 4(x-1) \quad and \quad x-1 > 0$$

$$x+2 < 4x-4 \quad and \quad x > 1$$

$$6 < 3x \quad and \quad x > 1$$

$$x > 2 \quad and \quad x > 1$$

 S_1 must satisfy both inequalities, so it is the set $(2, \infty)$.

 (S_2)

$$\frac{x+2}{x-1} < 4 \quad and \quad x-1 < 0$$

$$x+2 > 4(x-1) \quad and \quad x-1 < 0$$

$$x+2 > 4x-4 \quad and \quad x < 1$$

$$6 > 3x \quad and \quad x < 1$$

$$x < 2 \quad and \quad x < 1$$

 S_1 must satisfy both inequalities, so it is the set $(-\infty, 1)$.

 $S = S_1 \cup S_2 = (-\infty, 1) \cup (2, \infty).$

(20) Prove Theorem 1.13(ii) - If a < 0 and b < 0, then ab > 0.

$$a < 0, \quad b < 0 \implies a, b \text{ negative}$$

 $\implies -a, -b \text{ positive}$
 $\implies (-a)(-b) = ab \text{ positive, by } I$
 $\implies ab > 0$

(22) Prove Theorem 1.15(iii) - If a > b and a and b have the same sign, then $\frac{1}{a} < \frac{1}{b}$.

First, note that since a, b have signs, they are non-zero by definition. Since a, b have the same sign, ab > 0. By 1.15(i), $\frac{a}{ab} > \frac{b}{ab}$. But $\frac{a}{ab} = \frac{1}{b}$ and $\frac{b}{ab} = \frac{1}{a}$, so $\frac{1}{b} > \frac{1}{a}$ and $\frac{1}{a} < \frac{1}{b}$.

(24) Prove - If a>b and c>d , then a+c>b+d.

$$a > b, \quad c > d \implies a - b, c - d \text{ positive}$$

 $\implies (a - b) + (c - d) = (a + c) - (b + d) \text{ positive}$
 $\implies a + c > b + d$