1.3 Homework Solutions

(17) Find the solution set of the inequality

$$
\frac{x+2}{x-1}<4
$$

The solution set $S=S_{1} \cup S_{2}$, where $S_{1}=\left\{x: \frac{x+2}{x-1}<4\right.$ and $\left.x-1>0\right\}$ and $S_{2}=\{x:$ $\frac{x+2}{x-1}<4$ and $\left.x-1<0\right\}$.
$\left(S_{1}\right)$

$$
\begin{array}{rll}
\frac{x+2}{x-1}<4 & \text { and } & x-1>0 \\
x+2<4(x-1) & \text { and } & x-1>0 \\
x+2<4 x-4 & \text { and } & x>1 \\
6<3 x & \text { and } & x>1 \\
x>2 & \text { and } & x>1
\end{array}
$$

S_{1} must satisfy both inequalities, so it is the set $(2, \infty)$.
$\left(S_{2}\right)$

$$
\begin{array}{rll}
\frac{x+2}{x-1}<4 & \text { and } & x-1<0 \\
x+2>4(x-1) & \text { and } & x-1<0 \\
x+2>4 x-4 & \text { and } & x<1 \\
6>3 x & \text { and } & x<1 \\
x<2 & \text { and } & x<1
\end{array}
$$

S_{1} must satisfy both inequalities, so it is the set $(-\infty, 1)$.

$$
S=S_{1} \cup S_{2}=(-\infty, 1) \cup(2, \infty) .
$$

(20) Prove Theorem 1.13(ii) - If $a<0$ and $b<0$, then $a b>0$.

$$
\begin{aligned}
a<0, \quad b<0 & \Rightarrow a, b \text { negative } \\
& \Rightarrow-a,-b \text { positive } \\
& \Rightarrow(-a)(-b)=a b \text { positive, by } I \\
& \Rightarrow a b>0
\end{aligned}
$$

(22) Prove Theorem 1.15(iii) - If $a>b$ and a and b have the same sign, then $\frac{1}{a}<\frac{1}{b}$.

First, note that since a, b have signs, they are non-zero by definition. Since a, b have the same sign, $a b>0$. By $1.15(\mathrm{i}), \frac{a}{a b}>\frac{b}{a b}$. But $\frac{a}{a b}=\frac{1}{b}$ and $\frac{b}{a b}=\frac{1}{a}$, so $\frac{1}{b}>\frac{1}{a}$ and $\frac{1}{a}<\frac{1}{b}$.
(24) Prove - If $a>b$ and $c>d$, then $a+c>b+d$.

$$
\begin{aligned}
a>b, \quad c>d & \Rightarrow a-b, c-d \text { positive } \\
& \Rightarrow(a-b)+(c-d)=(a+c)-(b+d) \text { positive } \\
& \Rightarrow a+c>b+d
\end{aligned}
$$

