1.4 Homework Solutions

(3) Use induction to establish the formula

$$
\sum_{i=1}^{n}(2 i-1)=n^{2}
$$

Let S be the set of natural numbers for which the formula holds. We will show that S is inductive, so that $\mathbb{N} \in S$.

Check $n=1 .(2(1)-1)=2-1=1=1^{2}$. So $1 \in S$.
Suppose $k \in S$.

$$
\begin{aligned}
\sum_{i=1}^{k+1}(2 i-1) & =(2(k+1)-1)+\sum_{i=1}^{k}(2 i-1) \\
& =(2 k+2-1)+\left(k^{2}\right) \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2}
\end{aligned}
$$

So $k+1 \in S$. Therefore S is inductive, $\mathbb{N} \in S$, and the formula holds for \mathbb{N}.
(6) Use induction to establish the formula

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

Let S be the set of natural numbers for which the formula holds. We will show that S is inductive, so that $\mathbb{N} \in S$.

Check $n=1 . \frac{1}{1(1+1)}=\frac{1}{1+1}$. So $1 \in S$.
Suppose $k \in S$.

$$
\begin{aligned}
\sum_{i=1}^{k+1} \frac{1}{i(i+1)} & =\frac{1}{(k+1)(k+2)}+\sum_{i=1}^{k} \frac{1}{i(i+1)} \\
& =\frac{1}{(k+1)(k+2)}+\frac{k}{k+1} \\
& =\frac{1+k(k+2)}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2}
\end{aligned}
$$

So $k+1 \in S$. Therefore S is inductive, $\mathbb{N} \in S$, and the formula holds for \mathbb{N}.
(13) Use induction to establish the assertion

$$
(1+a)^{n} \geq 1+n a \quad \text { for } a \geq 0 \text { and } n \in \mathbb{N}
$$

Let S be the set of natural numbers for which the assertion holds. We will show that S is inductive, so that $\mathbb{N} \in S$.

Check $n=1 .(1+a)^{1}=1+a=1+(1) a$. So $1 \in S$.
Suppose $k \in S$.

$$
\begin{aligned}
(1+a)^{k+1} & =(1+a)^{k}(1+a) \\
& \geq(1+k a)(1+a) \\
& \geq 1+(k+1) a+k a^{2} \\
& \geq 1+(k+1) a
\end{aligned}
$$

So $k+1 \in S$. Therefore S is inductive, $\mathbb{N} \in S$, and the assertion holds for \mathbb{N}.

