1.4 Homework Solutions

(3) Use induction to establish the formula

$$\sum_{i=1}^{n} (2i-1) = n^2$$

Let S be the set of natural numbers for which the formula holds. We will show that S is inductive, so that $\mathbb{N} \in S$.

Check n = 1. $(2(1) - 1) = 2 - 1 = 1 = 1^2$. So $1 \in S$.

Suppose $k \in S$.

$$\sum_{i=1}^{k+1} (2i-1) = (2(k+1)-1) + \sum_{i=1}^{k} (2i-1)$$
$$= (2k+2-1) + (k^2)$$
$$= k^2 + 2k + 1$$
$$= (k+1)^2$$

So $k + 1 \in S$. Therefore S is inductive, $\mathbb{N} \in S$, and the formula holds for \mathbb{N} .

(6) Use induction to establish the formula

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

Let S be the set of natural numbers for which the formula holds. We will show that S is inductive, so that $\mathbb{N} \in S$.

Check
$$n = 1$$
. $\frac{1}{1(1+1)} = \frac{1}{1+1}$. So $1 \in S$.

Suppose $k \in S$.

$$\sum_{i=1}^{k+1} \frac{1}{i(i+1)} = \frac{1}{(k+1)(k+2)} + \sum_{i=1}^{k} \frac{1}{i(i+1)}$$
$$= \frac{1}{(k+1)(k+2)} + \frac{k}{k+1}$$
$$= \frac{1+k(k+2)}{(k+1)(k+2)}$$
$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$
$$= \frac{(k+1)^2}{(k+1)(k+2)}$$
$$= \frac{k+1}{k+2}$$

So $k + 1 \in S$. Therefore S is inductive, $\mathbb{N} \in S$, and the formula holds for \mathbb{N} .

(13) Use induction to establish the assertion

$$(1+a)^n \ge 1+na$$
 for $a \ge 0$ and $n \in \mathbb{N}$

Let S be the set of natural numbers for which the assertion holds. We will show that S is inductive, so that $\mathbb{N} \in S$.

Check n = 1. $(1 + a)^1 = 1 + a = 1 + (1)a$. So $1 \in S$.

Suppose $k \in S$.

$$(1+a)^{k+1} = (1+a)^k (1+a)$$

$$\geq (1+ka)(1+a)$$

$$\geq 1+(k+1)a+ka^2$$

$$\geq 1+(k+1)a$$

So $k + 1 \in S$. Therefore S is inductive, $\mathbb{N} \in S$, and the assertion holds for \mathbb{N} .