Solutions - 2.1/2.2 Continuous Functions

(9) Show that

$$
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}=-6
$$

Let $\epsilon>0$ be given. Assume $|x-(-3)|<\delta$.

$$
\begin{aligned}
\left|\frac{x^{2}-9}{x+3}-(-6)\right| & =|x-3+6| \\
& =|x+3| \\
& <\delta
\end{aligned}
$$

As long as $|x-(-3)|<\delta=\epsilon$, then $\left|\frac{x^{2}-9}{x+3}-(-6)\right|<\epsilon$.
(12) Show that

$$
\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}=6
$$

Let $\epsilon>0$ be given. Assume $|x-9|<\delta$.

$$
\begin{aligned}
\left|\frac{x-9}{\sqrt{x}-3}-6\right| & =|\sqrt{x}+3-6| \\
& =|\sqrt{x}-3| \\
& =\left|\frac{x-9}{\sqrt{x}+3}\right| \quad \text { as long as } \delta \leq 5, \quad x \geq 4 \\
& <\frac{\delta}{\sqrt{4}+3} \\
& =\frac{\delta}{5}
\end{aligned}
$$

As long as $|x-9|<\delta=\min \{5,5 \epsilon\}$, then $\left|\frac{x-9}{\sqrt{x}-3}-6\right|<\epsilon$.
(21) For all $x \in \mathbb{R}$, define

$$
f(x)= \begin{cases}1 & \text { if } x \text { is a rational number } \\ 0 & \text { if } x \text { is an irrational number }\end{cases}
$$

Show that every value of x, f is not continuous.
Let x be any real number and let $\epsilon=\frac{1}{4}$. Let δ be any positive real number.
Then there exists $N>0$ large enough such that $\frac{1}{10^{N}}<\frac{\delta}{2}$. Let r be the decimal expansion of x rounded to $N+1$ digits. Then $|x-r|<\delta$ and r is rational. We can also see that $\left|x-\left(r+\frac{\sqrt{2}}{10^{N+1}}\right)\right|<\delta$ and $s=r+\frac{\sqrt{2}}{10^{N+1}}$ is irrational. Both r and s are within δ of x. If x is rational, then $|f(x)-f(s)|=|1-0|=1>\frac{1}{4}$. If x is irrational, then $|f(x)-f(r)|=|0-1|=$ $1>\frac{1}{4}$. Since δ was an arbitrary positive number, there is no δ which makes the limit work for $\epsilon=\frac{1}{4}$. Therefore, the limit does not exist (for any real x) and f is not continuous (for any real x).

