Solutions - 2.1/2.2 Limit Laws

(1) Show that for all numbers a, c, d,

$$
\lim _{x \rightarrow a} c x+d=c a+d
$$

Let $\epsilon>0$ be given. Assume $|x-a|<\delta$.

$$
\begin{aligned}
|(c x+d)-(c a+d)| & =|c(x-a)| \\
& =|c||x-a| \\
& <|c| \delta
\end{aligned}
$$

If $c=0$, any δ will do. If $c \neq 0$, as long as $|x-a|<\delta=\frac{\epsilon}{|c|}$, then $|(c x+d)-(c a+d)|<\epsilon$.
(2) Use Theorems 2.2, 2.3, 2.5, 2.6 to show that for all numbers a, c, d, e,

$$
\lim _{x \rightarrow a} c x^{2}+d x+e=c a^{2}+d a+e
$$

$$
\begin{align*}
\lim _{x \rightarrow a} c x^{2}+d x+e & =\lim _{x \rightarrow a} c x^{2}+\lim _{x \rightarrow a} d x+\lim _{x \rightarrow a} e \tag{2.5}\\
& =\left(\lim _{x \rightarrow a} c\right)\left(\lim _{x \rightarrow a} x\right)\left(\lim _{x \rightarrow a} x\right)+\left(\lim _{x \rightarrow a} d\right)\left(\lim _{x \rightarrow a} x\right)+\lim _{x \rightarrow a} e \tag{2.6}\\
& =(c)\left(\lim _{x \rightarrow a} x\right)\left(\lim _{x \rightarrow a} x\right)+(d)\left(\lim _{x \rightarrow a} x\right)+e \\
& <(c)(a)(a)+(d)(a)+e \quad(2.3) \\
& =c a^{2}+d a+e
\end{align*}
$$

Prove Corollary 2 part 1 : The function $f(x)=\frac{1}{x}$ is continuous for every value of $x \neq 0$.
Let a be any real number other than 0 and let $\epsilon>0$ be given. Assume $|x-a|<\delta$.

$$
\begin{aligned}
\left|\frac{1}{x}-\frac{1}{a}\right| & =\left|\frac{a-x}{a x}\right| \\
& =\frac{|x-a|}{|a||x|} \\
& <\delta \frac{1}{|a|} \frac{1}{|x|}
\end{aligned}
$$

If we ensure that $\delta<\frac{|a|}{2}$, then $\frac{a}{2}<x<\frac{3 a}{2}$ and $\frac{1}{|x|}<\frac{2}{|a|}$. So

$$
\left|\frac{1}{x}-\frac{1}{a}\right|<\delta \frac{1}{|a|} \frac{1}{|x|}<\delta \frac{1}{|a|} \frac{2}{|a|}
$$

Then as long as $|x-a|<\delta=\min \left\{\frac{|a|}{2}, \frac{\epsilon|a|^{2}}{2}\right\}$, then $\left|\frac{1}{x}-\frac{1}{a}\right|<\epsilon$.
(13) Prove Th 2.8 (Limit of a Quotient): Suppose that

$$
\lim _{x \rightarrow a} f(x)=L \quad, \quad \lim _{x \rightarrow a} g(x)=M
$$

If $M \neq 0$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}
$$

This can be proved by applying Theorems 2.6, 2.7 and Corollary 2. By (2.6),

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} \frac{1}{g(x)}\right)
$$

By (2.7) and Cor 2 (which says $1 / x$ is continuous),

$$
\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} \frac{1}{g(x)}\right)=\left(\lim _{x \rightarrow a} f(x)\right)\left(\frac{1}{\lim _{x \rightarrow a} g(x)}\right)
$$

Then we just plug in our assumptions.

$$
\left(\lim _{x \rightarrow a} f(x)\right)\left(\frac{1}{\lim _{x \rightarrow a} g(x)}\right)=L\left(\frac{1}{M}\right)=\frac{L}{M}
$$

