Solutions - 2.3/2.4 - One Sided and Infinite Limits

(3) For the function $f(x) = \frac{|x|}{x}$, find the limit at x = 0 from the left and right, and determine if the function is continuous at 0.

Let $\epsilon > 0$ be given. Assume $0 < x < \delta$.

$$\frac{|x|}{x} - 1| = |\frac{x}{x} - 1|$$

= $|1 - 1|$
= 0

Works for any δ . So $\lim_{x\to 0^+} \frac{|x|}{x} = 1$. Now assume $-\delta < x < 0$.

$$\frac{|x|}{x} - (-1)| = |\frac{-x}{x} + 1|$$

= |-1+1|
= 0

Works for any δ . So $\lim_{x\to 0^-} \frac{|x|}{x} = -1$. Since these limits are different, $\lim_{x\to 0} \frac{|x|}{x}$ does not exist and f(x) is not continuous at x = 0.

(6) Evaluate the limit

$$\lim_{x \to 1^+} \frac{(x-1)}{\sqrt{x^2 - 1}}$$

Let $\epsilon > 0$ be given. Assume $0 < x - 1 < \delta$.

$$\begin{aligned} |\frac{(x-1)}{\sqrt{x^2-1}} - 0| &= |\frac{(x-1)}{\sqrt{(x-1)(x+1)}}| \\ &= |\frac{\sqrt{x-1}}{\sqrt{x+1}}| \\ &< \frac{\sqrt{\delta}}{1+1} \end{aligned}$$

As long as $0 < x - 1 < \delta = 4\epsilon^2$, then $\left|\frac{(x-1)}{\sqrt{x^2-1}} - 0\right| < \epsilon$. Therefore, $\lim_{x \to 1^+} \frac{(x-1)}{\sqrt{x^2-1}} = 0$.

(8) Evaluate the limit

$$\lim_{x \to +\infty} \frac{(x^2+1)}{x^{\frac{3}{2}}}$$

Let M > 0 be given. Assume x > N.

$$\begin{aligned} |\frac{(x^2+1)}{x^{\frac{3}{2}}}| &= |\frac{x^2}{x^{\frac{3}{2}}} + \frac{1}{x^{\frac{3}{2}}}| \\ &= |x^{\frac{1}{2}} + \frac{1}{x^{\frac{3}{2}}}| \\ &> |x^{\frac{1}{2}}| \\ &> N^{\frac{1}{2}} \end{aligned}$$

As long as $x > N = M^2$, then $\left|\frac{(x^2+1)}{x^{\frac{3}{2}}}\right| > M$. Therefore, $\lim_{x \to +\infty} \frac{(x^2+1)}{x^{\frac{3}{2}}} = +\infty$.

(11) Prove Theorem 2.14:

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

Let $\epsilon > 0$ be given. Assume |x| > M.

$$\begin{aligned} |\frac{1}{x} - 0| &= \frac{1}{|x|} \\ &< \frac{1}{M} \end{aligned}$$

As long as $|x| > M = \frac{1}{epsilon}$, then $|\frac{1}{x}| < \epsilon$.