Solutions - 2.3/2.4 - One Sided and Infinite Limits

(3) For the function $f(x)=\frac{|x|}{x}$, find the limit at $x=0$ from the left and right, and determine if the function is continuous at 0 .

Let $\epsilon>0$ be given. Assume $0<x<\delta$.

$$
\begin{aligned}
\left|\frac{|x|}{x}-1\right| & =\left|\frac{x}{x}-1\right| \\
& =|1-1| \\
& =0
\end{aligned}
$$

Works for any δ. So $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=1$.
Now assume $-\delta<x<0$.

$$
\begin{aligned}
\left|\frac{|x|}{x}-(-1)\right| & =\left|\frac{-x}{x}+1\right| \\
& =|-1+1| \\
& =0
\end{aligned}
$$

Works for any δ. So $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1$. Since these limits are different, $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist and $f(x)$ is not continuous at $x=0$.
(6) Evaluate the limit

$$
\lim _{x \rightarrow 1^{+}} \frac{(x-1)}{\sqrt{x^{2}-1}}
$$

Let $\epsilon>0$ be given. Assume $0<x-1<\delta$.

$$
\begin{aligned}
\left|\frac{(x-1)}{\sqrt{x^{2}-1}}-0\right| & =\left|\frac{(x-1)}{\sqrt{(x-1)(x+1)}}\right| \\
& =\left|\frac{\sqrt{x-1}}{\sqrt{x+1}}\right| \\
& <\frac{\sqrt{\delta}}{1+1}
\end{aligned}
$$

As long as $0<x-1<\delta=4 \epsilon^{2}$, then $\left|\frac{(x-1)}{\sqrt{x^{2}-1}}-0\right|<\epsilon$. Therefore, $\lim _{x \rightarrow 1^{+}} \frac{(x-1)}{\sqrt{x^{2}-1}}=0$.
(8) Evaluate the limit

$$
\lim _{x \rightarrow+\infty} \frac{\left(x^{2}+1\right)}{x^{\frac{3}{2}}}
$$

Let $M>0$ be given. Assume $x>N$.

$$
\begin{aligned}
\left|\frac{\left(x^{2}+1\right)}{x^{\frac{3}{2}}}\right| & =\left|\frac{x^{2}}{x^{\frac{3}{2}}}+\frac{1}{x^{\frac{3}{2}}}\right| \\
& =\left|x^{\frac{1}{2}}+\frac{1}{x^{\frac{3}{2}}}\right| \\
& >\left|x^{\frac{1}{2}}\right| \\
& >N^{\frac{1}{2}}
\end{aligned}
$$

As long as $x>N=M^{2}$, then $\left|\frac{\left(x^{2}+1\right)}{x^{\frac{3}{2}}}\right|>M$. Therefore, $\lim _{x \rightarrow+\infty} \frac{\left(x^{2}+1\right)}{x^{\frac{3}{2}}}=+\infty$.
(11) Prove Theorem 2.14:

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

Let $\epsilon>0$ be given. Assume $|x|>M$.

$$
\begin{aligned}
\left|\frac{1}{x}-0\right| & =\frac{1}{|x|} \\
& <\frac{1}{M}
\end{aligned}
$$

As long as $|x|>M=\frac{1}{\text { epsilon }}$, then $\left|\frac{1}{x}\right|<\epsilon$.

