Problems - 2.5-Limits of Sequences

(1) Given the function $f(x)=x \cos x$.
(a) Find a sequence of numbers $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} f\left(x_{n}\right)=0
$$

Choose $x_{n}=\left(n+\frac{1}{2}\right) \pi . \lim _{n \rightarrow \infty} x_{n}=\infty$ since each $x_{n}>n$ so Th 2.21 applies. Since $\cos \left(n+\frac{1}{2}\right) \pi=$ for any natural number $n, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$.
(b) Find a sequence of numbers $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} f\left(x_{n}\right)=+\infty
$$

Choose $x_{n}=n 2 \pi$. $\lim _{n \rightarrow \infty} x_{n}=\infty$ since each $x_{n}>n$ so Th 2.21 applies. Since $\cos n 2 \pi=1$ for any natural number $n, f\left(x_{n}\right)=n 2 \pi>n$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\infty$, again by 2.21.
(c) Find a sequence of numbers $\left\{x_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} f\left(x_{n}\right)=-\infty
$$

Choose $x_{n}=(2 n+1) \pi . \lim _{n \rightarrow \infty} x_{n}=\infty$ since each $x_{n}>n$ so Th 2.21 applies. Since $\cos (2 n+1) \pi=-1$ for any natural number $n,-f\left(x_{n}\right)=(2 n+1) \pi>n$ and $\lim _{n \rightarrow \infty}-f\left(x_{n}\right)=$ ∞, again by 2.21. Therefore, for any $M>0$, there is a number N such that $n>N$ implies $-f\left(x_{n}\right)>M$. It follows that $f\left(x_{n}\right)<-M$, so $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=-\infty$.
(6) If $-1<a<1$, show that $\lim _{n \rightarrow \infty} a^{n}=0$.

If $a=0, a^{n}=0$ for all n, so the result is clear. Suppose $a \neq 0$.
Let $\epsilon>0$ be given. We to find N such that $n>N$ implies $\left|a^{n}-0\right|<\epsilon$. Let's proceed by contradiction. Suppose $\left|a^{n}\right|>\epsilon$ for all $n \in \mathbb{N}$. Then $\frac{1}{|a|^{n}}<\frac{1}{\epsilon}$ for all n. Since $|a|<1$, $\frac{1}{|a|}>1$ and $\frac{1}{|a|^{n+1}}>\frac{1}{|a|^{n}}$. By Axiom C, there is a number $L \leq \frac{1}{\epsilon}$ such that $\lim _{n \rightarrow \infty} \frac{1}{|a|^{n}}=L$ and $\frac{1}{|a|^{n}} \leq L$ for all n.

The limit implies there exists N such that $n>N$ implies $\left|\frac{1}{|a|^{n}}-L\right|<(1-|a|) L$. Then

$$
\begin{aligned}
\left|\frac{1}{|a|^{N+1}}-L\right| & <(1-|a|) L \\
L-\frac{1}{|a|^{N+1}} & <L-|a| L \\
|a| L & <\frac{1}{|a|^{N+1}} \\
L & <\frac{1}{|a|^{N+2}}
\end{aligned}
$$

This last line is a contraction to the consequence of Axiom $\mathrm{C}\left(\frac{1}{|a|^{n}} \leq L\right)$. As a result, we must have $\left|a^{n}-0\right|<\epsilon$, and the limit is verified.

