Problems - 2.2-2.4 Extras

(1) Verify the limit

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x}=0
$$

Let $\epsilon>0$ be given. Assume $0<x-0<\delta$.

$$
\begin{aligned}
|\sqrt{x}-0| & =\sqrt{x} \\
& <\sqrt{\delta}
\end{aligned}
$$

Then as long as $0<x-0<\delta=\epsilon^{2},|\sqrt{x}-0|<\epsilon$.
(2) Verify the limit

$$
\lim _{x \rightarrow 4} \frac{x}{x-4}=\infty
$$

Let $M>0$ be given. Assume $|x-4|<\delta$. Note, as long as $\delta \leq 1,3<x<5$.

$$
\begin{aligned}
\left|\frac{x}{x-4}\right| & =\frac{|x|}{|x-4|} \\
& >\frac{3}{\delta}
\end{aligned}
$$

Then as long as $|x-4|<\delta=\min \left\{1, \frac{3}{M}\right\},\left|\frac{x}{x-4}\right|>M$.
(3) Prove the following, or find a counterexample: Suppose f and g are defined for $x>0$ and $\lim _{x \rightarrow 0^{+}} f(x)=0$. Then

$$
\lim _{x \rightarrow 0^{+}} f(x) g(x)=0
$$

This statement is false. If $f(x)=x$, we know $\lim _{x \rightarrow 0} f(x)=0$ and therefore $\lim _{x \rightarrow 0^{+}} f(x)=$ 0 . Let $g(x)=\frac{1}{x}$, which is also defined for $x>0$. Then

$$
\lim _{x \rightarrow 0^{+}} f(x) g(x)=\lim _{x \rightarrow 0^{+}} 1=1 \neq 0
$$

(4) Prove the following, or find a counterexample: Suppose f and g are defined for all real numbers, $\lim _{x \rightarrow+\infty} f(x)=L>0$ and $\lim _{x \rightarrow+\infty} g(x)=+\infty$. Then

$$
\lim _{x \rightarrow+\infty} f(x) g(x)=+\infty
$$

This statement is true. Let $M>0$ be given. As long as we make sure $f(x)$ is not near 0 , we can ensure $g(x)$ is large enough to make $f(x) g(x)>M$.

Since $\lim _{x \rightarrow+\infty} f(x)=L$, then (using $\epsilon=\frac{L}{2} *$) there is a number $N_{f}>0$ such that $x>N_{f}$ implies $\frac{L}{2}<f(x)<\frac{3 L}{2}$.

Since $\lim _{x \rightarrow+\infty} g(x)=+\infty$, there is a number $N_{g}>0$ such that $x>N_{g}$ implies $g(x)>$ $\frac{M}{(L / 2)}$.

Then $x>\max \left\{N_{f}, N_{g}\right\}$ implies

$$
f(x) g(x)>\frac{L}{2} \frac{M}{(L / 2)}=M
$$

* Note - We must choose ϵ to ensure $f(x) \neq 0$, otherwise $f(x)-\epsilon$ could be 0 or negative. In either case, the last line concerning $f(x) g(x)$ wouldn't work.

