Solutions - 3.2

(2) Find $\inf S$ and $\sup S$, and state whether or not these are contained in S.

$$
S=\left\{x: x^{2}-3<0\right\}
$$

$\inf S=\sqrt{3}$ and $\sup S=-\sqrt{3}$. As a quick check, let ϵ be a real number such that $0<\epsilon<2 \sqrt{3}$. Then $\sqrt{3}-\epsilon$ is not an upper bound, since

$$
\left(\sqrt{3}-\frac{\epsilon}{2}\right)^{2}-3=-\epsilon \sqrt{3}+\frac{\epsilon^{2}}{4}=-\frac{\epsilon}{2}\left(2 \sqrt{3}-\frac{\epsilon}{2}\right)<-\frac{\epsilon}{2}\left(\epsilon-\frac{\epsilon}{2}\right)<0
$$

Similarly, $-\sqrt{3}+\epsilon$ is not a lower bound. Note, neither $\pm \sqrt{3}$ are in S as neither satisfies the inequality.
(4) Find $\inf S$ and $\sup S$, and state whether or not these are contained in S.

$$
S=\left\{x: x=\frac{y}{y+1}, \quad y \geq 0\right\}
$$

Since $f(y)=\frac{y}{y+1}=1-\frac{1}{y+1}$, we can see that $f(y)$ is increasing for $y \geq 0$. So we have $\inf S=\lim _{x \rightarrow 0^{+}} f(y)=f(0)=0$ (since f is a rational function and the denominator is not 0 at $y=0, f$ is continuous at 0 by Theorems 2.2, 2.3, 2.5 and 2.8.). We also have

$$
\sup S=\lim _{x \rightarrow+\infty} f(y)=\lim _{x \rightarrow+\infty} \frac{1}{1+\frac{1}{y}}=\frac{\lim _{x \rightarrow+\infty} 1}{\lim _{x \rightarrow+\infty} 1+\lim _{x \rightarrow+\infty} \frac{1}{y}}=\frac{1}{1+0}=1
$$

(10) Suppose $B_{1}=\sup S_{1}, B_{2}=\sup S_{2}$ and $S_{1} \subset S_{2}$. Show that $B_{1} \leq B_{2}$.

Suppose $B<B_{1}$. Since $B_{1}=\sup S_{1}$, we can find $x \in S_{1}$ such that $B<x<B_{1}$. But since $S_{1} \subset S_{2}, x$ is also in S_{2}. Therefore, B cannot be an upper bound for S_{2}. Since B was an arbitrary number less than B_{1}, any upper bound for S_{2}, including B_{2}, must be greater or equal B_{1}.
(11) Suppose the S_{1}, S_{2}, S_{3} are sets in \mathbb{R} and $S=S_{1} \cup S_{2} \cup S_{3}$. Show that $\inf S=$ $\min \left(\inf S_{1}, \inf S_{2}, \inf S_{3}\right)$.

Let $b=\min \left(\inf S_{1}, \inf S_{2}, \inf S_{3}\right)$. Need to check that b is a lower bound, then that b is the greatest lower bound.

Suppose $x \in S$. Then $x \in S_{i}$ for at least one of $i=1,2,3$. This implies $x \geq \inf S_{i} \geq$ $\min \left(\inf S_{1}, \inf S_{2}, \inf S_{3}\right)=b$. So b is a lower bound on S.

Now suppose $a>b$. Then $a>\inf S_{j}$ for at least one of $j=1,2,3$. This implies we can find $y \in S_{j}$ such that $\inf S_{j}<y<a$. Since y is also in S, a is not a lower bound on S_{j} or S. Since a could be any number greater than $b, b=\inf S$.

