Solutions - 3.4

(0) Suppose that the domain of f is the interval $I=[0,5)$ and f is continuous on I. Give an example to show that the conclusion of the Boundedness Theorem does not hold.

The function $f(x)=\frac{1}{x-5}$ is continuous except at $x=5$, which is not in I, so f is continuous on I. Not that $x_{n}=5+\frac{1}{n}$ is in I for each natural number n, but $f\left(x_{n}\right)=n$. Therefore f is unbounded on I.
(3) Suppose that f is continuous on the set $S=[0, \infty)$ and S is bounded. Give an example to show that the conclusion of the Extreme Value Theorem does not hold.

Let $f(x)=\frac{1}{x^{2}+1}$. Since the denominator is not 0 for any real numbers, f is continuous. $f(x) \neq 0$ for any real number, but for any number $0<c \leq 1, f\left(\sqrt{\frac{1}{c}-1}\right)=c$. So $\inf _{S} f(x)=$ 0 but $f(x) \neq 0$ for any number in S.

