Solutions - 3.5

(5) Show that the function $f(x)=\frac{1}{x}$ is uniformly continuous on $S=[1, \infty)$.

Let $\epsilon>0$ be given. Assume $\left|x_{1}-x_{2}\right|<\delta$ and $x_{1}, x_{2} \in S$.

$$
\begin{aligned}
\left|\frac{1}{x_{1}}-\frac{1}{x_{2}}\right| & =\frac{\left|x_{2}-x_{1}\right|}{\left|x_{1} x_{2}\right|} \\
& <\frac{\delta}{\left|x_{1}\right|\left|x_{2}\right|} \\
& \leq \frac{\delta}{(1)(1)} \quad \text { since } x_{1}, x_{2} \geq 1 \\
& =\delta
\end{aligned}
$$

So as long as $\left|x_{1}-x_{2}\right|<\delta=\epsilon$ and $x_{1}, x_{2} \in S$, we have $\left|\frac{1}{x_{1}}-\frac{1}{x_{2}}\right|<\epsilon$.
(9) Show using ϵ and δ (not Th. 3.13) that $f(x)=\sqrt{x}$ is uniformly continuous on $I=[0,1]$. Let $\epsilon>0$ be given. Assume $\left|x_{1}-x_{2}\right|<\delta$ and $x_{1}, x_{2} \in I$.

$$
\begin{aligned}
\left|\sqrt{x_{1}}-\sqrt{x_{2}}\right| & =\frac{\left|\sqrt{x_{1}}-\sqrt{x_{2}}\right|\left|\sqrt{x_{1}}+\sqrt{x_{2}}\right|}{\left|\sqrt{x_{1}}+\sqrt{x_{2}}\right|} \\
& =\frac{\left|x_{1}-x_{2}\right|}{\left|\sqrt{x_{1}}+\sqrt{x_{2}}\right|} \\
& <\frac{\delta}{\left|\sqrt{x_{1}}+\sqrt{x_{2}}\right|}
\end{aligned}
$$

Uh-oh. That denominator could be really small, so this isn't going to work. But x_{1} and x_{2} very close to 0 is not hard to deal with another way. If $0 \leq x_{1}<\epsilon^{2}$, then $\sqrt{x_{1}}<\epsilon$. Same for x_{2}. Their difference is even smaller, so $\left|x_{1}-x_{2}\right|<\epsilon^{2}$ and $\left|\sqrt{x_{1}}-\sqrt{x_{2}}\right|<\epsilon$ for these small x 's. If at least one of the x 's is bigger or equal to ϵ^{2} (so $\sqrt{x_{i}}>\epsilon$), then we can go back to the old plan.

$$
\begin{aligned}
\left|\sqrt{x_{1}}-\sqrt{x_{2}}\right| & <\frac{\delta}{\left|\sqrt{x_{1}}+\sqrt{x_{2}}\right|} \\
& \leq \frac{\delta}{\epsilon}
\end{aligned}
$$

So as long as $\left|x_{1}-x_{2}\right|<\delta=\epsilon^{2}$ and $x_{1}, x_{2} \in I$, we have $\left|\sqrt{x_{1}}-\sqrt{x_{2}}\right|<\epsilon$.
(10) Suppose the f is uniformly continuous on the half-open interval $I=(0,1]$. Is it true that f must be bounded on I ? If so, prove it. If not, give a counter-example.

This is true. Pick an $\epsilon>0$. Since f is uniformly continuous, there exists a δ such that $\left|x_{1}-x_{2}\right|<\delta$ and $x_{1}, x_{2} \in(0,1]$ implies $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$.

Pick a number c between 0 and δ (such as $\frac{\delta}{2}$). Then $\left|x_{1}-x_{2}\right|=c$ and $x_{1}, x_{2} \in(0,1]$ implies $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$. Starting from $f(1)$, if we step left by c, f can only go up or down by ϵ. Each step can only add or subtract ϵ. So

$$
\begin{aligned}
f(1)-\epsilon & \leq f(1-c) \leq f(1)+\epsilon \\
f(1)-2 \epsilon & \leq f(1-2 c) \leq f(1)+2 \epsilon \\
f(1)-3 \epsilon & \leq f(1-3 c) \leq f(1)+3 \epsilon \\
f(1)-k \epsilon & \leq f(1-k c) \leq f(1)+k \epsilon
\end{aligned}
$$

Every x in $(0,1]$ can be reach by going left from $x=1$ in $\frac{1}{c}$ steps of size c or less. Since you took $\frac{1}{c}$ steps or fewer, f can only change by at most $\epsilon \frac{1}{c}$. Therefore, $f(1)-\epsilon \frac{1}{c} \leq f(x) \leq$ $f(1)+\epsilon \frac{1}{c}$ for all $x \in(0,1]$.

