Solutions - 3.6

(4) Decide if the given sequence is a Cauchy sequence. If it is, prove it. If it is not, a subsequence which is a Cauchy sequence.

$$
x_{n}=1+(-1)^{n}+\frac{1}{n}
$$

Since $\frac{1}{n}$ goes to 0 , this sequences essentially alternates between 0 and 2 , and hence does not converge. The even terms $2+\frac{1}{2 n}$ converge to 2 , so that subsequence is Cauchy (works for odd terms too).
(7) Suppose that $s_{n}=\sum_{j=1}^{n} u_{j}$ and $S_{n}=\sum_{j=1}^{n}\left|u_{j}\right|$ for $n \in \mathbb{N}$. Assume $\lim _{n \rightarrow \infty} S_{n}=S$. Show that s_{n} converges as n goes to infinity.

Let $\epsilon>0$ be given. Since S_{n} converges, it is Cauchy. Therefore, we can find $N>0$ so that if $n, m>N$, we have

$$
\left|S_{n}-S_{m}\right|<\epsilon
$$

Assume, without loss of generality, that $n \geq m$. Then

$$
\left|S_{n}-S_{m}\right|=\left|u_{m+1}\right|+\left|u_{m+2}\right|+\cdots+\left|u_{n}\right|<\epsilon
$$

Meanwhile, we can do something similar for s_{n}, then relate the two sequences by the Triangle Inequality.

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & =\left|u_{m+1}+u_{m+2}+\cdots+u_{n}\right| \\
& \leq\left|u_{m+1}\right|+\cdots+\left|u_{n}\right| \quad \text { by Tri. Ineq. } \\
& <\epsilon
\end{aligned}
$$

So s_{n} is Cauchy too, and therefore converges.
(9) Suppose that f has a domain which contains interval $I=(a, b)$, and suppose that $\lim _{x \rightarrow b^{-}} f(x)=L$. Prove that for each $\epsilon>0$, there is a $\delta>0$ such that $b-\delta<x, y<b$ implies $|f(x)-f(y)|<\epsilon$. (Note: You are proving one direction of Th. 3.14 for one-sided limits.)

Let $\epsilon>0$ be given. Since $\lim _{x \rightarrow b^{-}} f(x)=L$, we can find $\delta>0$ so that if $b-\delta<x<b$, then $|f(x)-L|<\frac{\epsilon}{2}$ (we use $\frac{\epsilon}{2}$ since we are aiming for $<\epsilon$ at the end). Then if both x and y are between $b-\delta$ and b, we have

$$
|f(x)-f(y)|=|f(x)-L+L-f(y)| \leq|f(x)-L|+|L-f(y)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

