Solutions - 3.7

(13) (a) Show that the family F of all intervals of the form $I_{n}=\left(\frac{1}{n+2}, \frac{1}{n}\right)$ for $n \in \mathbb{N}$ covers the interval $J=(0,1)$.

For this problem, a picture with the first few intervals showing the repeating pattern is sufficient. If you are set on doing a rigorous proof, it might look something like the following:

Let c be a number in $J=(0,1)$. Since the sequence $\frac{1}{n}$ for $n \in \mathbb{N}$ is decreasing, starts at 1 and converges to 0 , we can find a positive integer k such that $\frac{1}{k+1} \leq c<\frac{1}{k}$. Then $c \in\left(\frac{1}{k+2}, \frac{1}{k}\right)$. Since c was arbitrary, F covers J.
(b) Show that no subfamily (finite or infinite) of F covers J.

Any proper subfamily would have to remove at least one interval I_{n} from F. If I_{n} is removed, then the number $\frac{1}{n+1}$ is not contained in any of the remaining intervals. Therefore no proper subfamily of F covers $(0,1)$.
(15) Let F_{1} be the family of all intervals $I_{n}=\left(\frac{1}{2^{n}}, 2\right)$ for $n \in \mathbb{N}$. Show the F_{1} covers that interval $J=(0,1)$. Does any finite subfamily of F_{1} cover J ? Prove your answer.

As in 13(a), a simple argument would be sufficient. The careful argument would say that for any $c \in J=(0,1)$, we can find k such that $\frac{1}{2^{k}}<c$. Then $c \in\left(\frac{1}{2^{k}}, 2\right)$. So F_{1} covers J.

If we take a finite subfamily of F_{1}, then one of the intervals in the subfamily has the highest subscript; in other words, it was latest in the original list, and consequently is the biggest interval in the subfamily since the intervals are nested. Suppose that biggest interval is $I_{m}=\left(\frac{1}{2^{m}}, 2\right)$. Then any points between 0 and $\frac{1}{2^{m}}$ are not in I_{m}, or any of the subfamily members (since I_{m} was biggest). Therefore, no finite subfamily can cover J.

