Solutions - 3.7 Cantor Set

(A) Use the geometric series formula (from Calc 2) to show that

$$
\sum_{n=1}^{\infty} \frac{2}{3^{2 n}}=\frac{1}{4}
$$

Conclude that $\frac{1}{4}$ is in the Cantor Set.

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{2}{3^{2 n}} & =\frac{2}{9} \sum_{n=0}^{\infty} \frac{1}{3^{2 n}} \\
& =\frac{2}{9} \frac{1}{1-\frac{1}{9}} \\
& =\frac{2}{9} \frac{9}{8} \\
& =\frac{1}{4}
\end{aligned}
$$

Since the base 3 expansion of $\frac{1}{4}$ has only 0 and 2 coefficients, $\frac{1}{4}$ is in the Cantor Set.
(B) Let c be any point in the Cantor Set, and let I be an open interval containing c. Show that I also contains points that are not in the Cantor Set.

Method 1: Let δ be the distance from c to the nearest edge of I. Then for some $n, \frac{1}{3^{n}}<\delta$. Let x be the point which has the same base 3 expansion as c, expect that the coefficient of $\frac{1}{3^{n}}$ is 1 . Then x is not in the Cantor Set (since it has a 1 in the base 3 expansion) but x is contained in I.

Method 2: Let δ be the distance from c to the nearest edge of I. Then for some n, $\frac{1}{3^{n}}<\delta$. At the n-step of removing middle thirds, c (and the rest of the Cantor Set) is in closed intervals of width $\frac{1}{3^{n}}$. The closed interval containing c is entirely contained in I, and just outside that closed interval (but still in I) we have stuff which was just removed (and so not in the Cantor Set).
(C) Let F be a family of opens intervals which covers the Cantor Set. Show that a finite subfamily of F covers the Cantor Set.

Proceed by contradiction, very similar to the Heine-Borel proof. Suppose that there is no finite subfamily covering the Cantor Set, which is contained in $I_{0}=[0,1]$.

Remove the middle third of $[0,1]$. Then we need an infinite subfamily to cover at least one of the Cantor Set contained in the bottom third or the top third. Let I_{1} be the third which requires an infinite number. Note, I_{1} has width $\frac{1}{3}$.

Repeat. At each step, remove the middle third from I_{k} (which has width $\frac{1}{3^{k}}$). Either the piece of the Cantor Set in the bottom piece needs an infinite subfamily, or the piece in the top piece does. Let I_{k+1} be the interval width $\frac{1}{3^{k+1}}$ which needs an infinite subfamily.

The Nested Intervals theorem applies, and the intervals I_{k} squeeze down to a single point, x_{0}. Since x_{0} was in each I_{k}, it is in the Cantor Set. Since F covers the Cantor Set, there is
an interval $J \in F$ containing x_{0}. But then there will be an I_{k} which is small enough that $x_{0} \in I_{k} \subset J$ (choose k so that $\frac{1}{3^{k}}$ is less than the distance from x_{0} to the nearest edge of J). This is a contradiction, since J (a finite subfamily) covers all of I_{k}, so certainly covers the part of the Cantor Set inside I_{k}.

