Solutions - 4.1-Theorem Proofs

Prove the following theorems. You may refer to other theorems as long as they have lower numbers.
(Thm 4.2) Suppose f is defined on open interval I, c is a real number and $g(x)=c f(x)$. If $f^{\prime}(x)$ exists, then $g^{\prime}(x)$ exists and $g^{\prime}(x)=c f^{\prime}(x)$.
(Proof) -

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x)}{h} \\
& =\lim _{h \rightarrow 0} c \frac{f(x+h)-f(x)}{h} \\
& =c \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =c f^{\prime}(x)
\end{aligned}
$$

(Thm 4.6) Suppose u and v are defined on open interval $I, v \neq 0$ on I and $f(x)=\frac{u(x)}{v(x)}$. If u^{\prime} and v^{\prime} exist, then $f^{\prime}(x)$ exists and $f^{\prime}(x)=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{[v(x)]^{2}}$.
(Proof) -

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{u(x+h)}{v(x+h)}-\frac{u(x)}{v(x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{u(x+h) v(x)-u(x) v(x+h)}{h v(x+h) v(x)} \\
& =\lim _{h \rightarrow 0} \frac{u(x+h) v(x)-u(x) v(x)+u(x) v(x)-u(x) v(x+h)}{h v(x+h) v(x)} \\
& =\lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h v(x+h)}-\lim _{h \rightarrow 0} \frac{u(x) v(x+h)-u(x) v(x)}{h v(x+h) v(x)} \\
& =\lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h} \lim _{h \rightarrow 0} \frac{1}{v(x+h)}-\frac{u(x)}{v(x)} \lim _{h \rightarrow 0} \frac{v(x+h)-v(x)}{h} \lim _{h \rightarrow 0} \frac{1}{v(x+h)} \\
& =u^{\prime}(x) \frac{1}{v(x)}-\frac{u(x)}{v(x)} v^{\prime}(x) \frac{1}{v(x)} \\
& =\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{[v(x)]^{2}}
\end{aligned}
$$

Note that in the second-last line, we used the fact that v^{\prime} exists implies v is continuous.
(Thm 4.10) Suppose f is continuous on open interval I, f takes on its maximum at x_{0}, and x_{0} is an interior point of I (that is, x_{0} is not one of the endpoints of I). If $f^{\prime}\left(x_{0}\right)$ exists, then $f^{\prime}\left(x_{0}\right)=0$.

Since $f^{\prime}\left(x_{0}\right)$ exists, $f^{\prime}\left(x_{0}\right)=\lim h \rightarrow 0^{+} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim h \rightarrow 0^{-} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$. But since $f\left(x_{0}\right)$ is the maximum of $f(x), f\left(x_{0}\right) \geq f\left(x_{0}+h\right)$, which means $f\left(x_{0}+h\right)-f\left(x_{0}\right) \leq 0$. So we have both

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim h \rightarrow 0^{+} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \\
f^{\prime}\left(x_{0}\right) & \left.=\lim h \rightarrow 0^{-} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \geq 0 \quad \text { since } h \text { is negative }\right)
\end{aligned}
$$

Since $f^{\prime}\left(x_{0}\right)$ is both greater or equal and less than or equal to 0 , it must be 0 .

