Solutions - 4.1 - Theorem Proofs
Prove the following theorems. You may refer to other theorems as long as they have

lower numbers.

(Thm 4.2) Suppose f is defined on open interval I, ¢ is a real number and g(x) = cf(x). If
f'(x) exists, then ¢'(x) exists and ¢'(z) = cf'(z).
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(Thm 4.6) Suppose u and v are defined on open interval I, v # 0 on I and f(z) = ZEQ It

' and v’ exist, then f/(z) exists and f/(z) = “@u@-u@v(@)
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Note that in the second-last line, we used the fact that v’ exists implies v is continuous.

(Thm 4.10) Suppose f is continuous on open interval I, f takes on its maximum at z,, and
xo is an interior point of I (that is, z¢ is not one of the endpoints of I). If f/'(zg) exists, then

f'(xg) = 0.



Since f'(xg) exists, f'(zo) = limh — 0*% =limh — O*w. But since
f(zo) is the maximum of f(z), f(zo) > f(xo + h), which means f(zo+ h) — f(zo9) < 0. So
we have both
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f'(zo) =limh — O*f(
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f'(zo) =limh — ()_f(x0 i })1 f(z0) > 0 since h is negative)

Since f'(xo) is both greater or equal and less than or equal to 0, it must be 0.



