Solutions - 4.2

(1) For the given function f, split the domain into intervals (as necessary) so that the f is either increasing or decreasing. For each interval, find the corresponding inverse function g.

$$
f(x)=x^{2}+2 x+2
$$

$f(x)=x^{2}+2 x+2=(x+1)^{2}+1$. We can see from the graph that f is decreasing when $x \leq-1$ and increasing when $x \geq-1$. A bit of algebra...

$$
\begin{aligned}
x & =(y+1)^{2}+1 \\
x-1 & =(y+1)^{2} \\
y & = \pm \sqrt{x-1}-1
\end{aligned}
$$

If $x \leq-1$, then $g(x)=-\sqrt{x-1}-1$. If $x \geq-1$, then $g(x)=\sqrt{x-1}-1$.
(5) For the given function f, split the domain into intervals (as necessary) so that the f is either increasing or decreasing. For each interval, find the corresponding inverse function g.

$$
f(x)=\frac{2 x}{x+2}
$$

The function is not defined for $x=-2$, so we will split the interval there no matter what.

$$
f^{\prime}(x)=\frac{2(x+2)-1(2 x)}{(x+2)^{2}}=\frac{4}{(x+2)^{2}}
$$

Note that $f^{\prime}(x)>0$ on its domain, so f is increasing up to and after $x=-2$.

$$
\begin{aligned}
x & =\frac{2 y}{y+2} \\
x y+2 x & =2 y \\
y(x-2) & =-2 x \\
y & =\frac{-2 x}{x-2}
\end{aligned}
$$

On each interval, $g(x)=\frac{-2 x}{x-2}$.

