Solutions - 6.1

(1) Show that \mathbb{R}^{n} with metric

$$
d(x, y)=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|
$$

is a metric space.

- d defined: Since the vectors have a finite number of terms, the max is always defined.
- $d(x, y) \geq 0$: Thanks to the absolute values, we are comparing positive terms, so d is always ≥ 0. The max is only $=0$ if all terms in the max are 0 ; in other words, x and y must be exactly the same.
- $d(x, y)=d(y, x)$: Since $\left|x_{i}-y_{i}\right|=\left|y_{i}-x_{i}\right|$ always, this property is clear.
- Triangle Inequality:

$$
\begin{aligned}
d(x, z) & =\max _{1 \leq i \leq n}\left|x_{i}-z_{i}\right| \\
& =\max _{1 \leq i \leq n}\left|x_{i}-y_{i}+y_{i}-z_{i}\right| \\
& \leq \max _{1 \leq i \leq n}\left(\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|\right) \\
& \leq \max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|+\max _{1 \leq i \leq n}\left|y_{i}-z_{i}\right| \\
& =d(x, y)+d(y, z)
\end{aligned}
$$

(15) Let S be the set of all absolutely convergent series. Show that S with metric

$$
d(x, y)=\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|
$$

is a metric space.

- d defined:

$$
\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right| l e q \sum_{i=1}^{\infty}\left(\left|x_{i}\right|+\left|y_{i}\right|\right)=\sum_{i=1}^{\infty}\left|x_{i}\right|+\sum_{i=1}^{\infty}\left|y_{i}\right|
$$

Since the x and y series are absolutely convergent, the last sums above converge so the $d(x, y)$ series converges.

- $d(x, y) \geq 0$: Thanks to the absolute values, we are summing positive terms, so d is always ≥ 0. The series is only $=0$ if all terms are 0 since we can't have negative terms; in other words, x and y must be exactly the same.
- $d(x, y)=d(y, x)$: Since $\left|x_{i}-y_{i}\right|=\left|y_{i}-x_{i}\right|$ always, this property is clear.
- Triangle Inequality:

$$
\begin{aligned}
d(x, z) & =\sum_{n=1}^{\infty}\left|x_{i}-z_{i}\right| \\
& =\sum_{n=1}^{\infty}\left|x_{i}-y_{i}+y_{i}-z_{i}\right| \\
& \leq \sum_{n=1}^{\infty}\left(\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|\right) \\
& =\sum_{n=1}^{\infty}\left|x_{i}-y_{i}\right|+\sum_{n=1}^{\infty}\left|y_{i}-z_{i}\right| \\
& =d(x, y)+d(y, z)
\end{aligned}
$$

