Solutions - 9.1

(3) Show whether the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+2)}
$$

$\frac{1}{n(n+2)}<\frac{1}{n^{2}}$ for all positive integers n, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges since it is a p-series with $p=2>1$. By comparison, the given series converges as well.
(4) Show whether the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}
$$

$\frac{1}{n 2^{n}} \leq \frac{1}{2^{n}}$ for all positive integers n, and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges since it is geometric with $r=\frac{1}{2}$. By comparison, the given series converges.
(11) Prove Theorem 9.4a. Suppose $u_{n} \geq 0$ for all $n \in \mathbb{N}$. If $u_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty}$ an converges, then $\sum_{n=1}^{\infty} u_{n}$ converges and $\sum_{n=1}^{\infty} u_{n} \leq \sum_{n=1}^{\infty} a_{n}$.

Since $u_{n} \leq a_{n}$ for all $n \in \mathbb{N}, \sum_{n=1}^{k} u_{n} \leq \sum_{n=1}^{k} a_{n}$ for all $k \in \mathbb{N}$. Note the sequence $s_{k}=\sum_{n=1}^{k} u_{n}$ is non-decreasing since $u_{n} \geq 0 . \sum_{n=1}^{k} a_{n}$ is also non-decreasing so $\sum_{n=1}^{k} a_{n} \leq$ $\sum_{n=1}^{\infty} a_{n}$ for all $k \in \mathbb{N}$, so $s_{k}=\sum_{n=1}^{k} u_{n}$ is bounded above. By Axiom C, $\lim _{k \rightarrow \infty} s_{k}=$ $\sum_{n=1}^{\infty} u_{n}$ converges.

