Solutions - 9.2 continued

(1) Show whether the following series is absolutely convergent, conditionally convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 10^{n}}{n!}
$$

Use Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|\frac{(-1)^{n} 10^{n+1}}{(n+1)!}\right|}{\left|\frac{(-1)^{n-1} 10^{n}}{n!}\right|} & =\lim _{n \rightarrow \infty} \frac{10}{n+1} \\
& =0<1
\end{aligned}
$$

The series is absolutely convergent by the Ratio Test.
(2) Show whether the following series is absolutely convergent, conditionally convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n!}{10^{n}}
$$

Use Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|\frac{(-1)^{n}(n+1)!}{10^{n+1}}\right|}{\left|\frac{(-1)^{n-1} n!}{10^{n}}\right|} & =\lim _{n \rightarrow \infty} \frac{n+1}{10} \\
& =+\infty
\end{aligned}
$$

The series is divergent by the Ratio Test.
(5) Show whether the following series is absolutely convergent, conditionally convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(4 / 3)^{n}}{n^{4}}
$$

Use Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|\frac{(-1)^{n+1}(4 / 3)^{n+1}}{(n+1)}\right|}{\left|\frac{(-1)^{n}(4 / 3)^{n}}{n^{4}}\right|} & =\lim _{n \rightarrow \infty} \frac{4 n^{4}}{3(n+1)^{4}} \\
& =\lim _{n \rightarrow \infty} \frac{4}{3\left(1+\frac{1}{n}\right)^{4}} \\
& =\frac{4}{3}>1
\end{aligned}
$$

The series is divergent by the Ratio Test.
(16) Show whether the following series is absolutely convergent, conditionally convergent or divergent.

$$
\sum_{n=1}^{\infty}\left(\frac{n}{2 n+1}\right)^{n}
$$

Use Root Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\left(\frac{n}{2 n+1}\right)^{n}\right|^{\frac{1}{n}} & =\lim _{n \rightarrow \infty}\left|\frac{n}{2 n+1}\right| \\
& =\lim _{n \rightarrow \infty} \frac{1}{2} \quad \text { by l'Hopital's } \\
& =\frac{1}{2}<1
\end{aligned}
$$

The series is absolutely convergent by the Ratio Test.
(17) Find all values of x for which the power series converges.

$$
\sum_{n=1}^{\infty}(n+1) x^{n}
$$

Use Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|(n+2) x^{n+1}\right|}{\left|(n+1) x^{n}\right|} & =\lim _{n \rightarrow \infty} \frac{(n+2)|x|}{n+1} \\
& =\lim _{n \rightarrow \infty}|x| \frac{1+\frac{2}{n}}{1+\frac{1}{n}} \\
& =|x|
\end{aligned}
$$

The series is absolutely convergent for $|x|<1$ and divergent for $|x|>1$. If $|x|=1$, then $u_{n}= \pm(n+1)$ and $\lim _{n \rightarrow \infty}(n+1) x^{n}=\infty$ so the series diverges.
(20) Find all values of x for which the power series converges.

$$
\sum_{n=1}^{\infty} \frac{n(x+2)^{n}}{2^{n}}
$$

Use Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|\frac{(n+1)(x+2)^{n+1}}{2^{n+1}}\right|}{\left|\frac{n(x+2)^{n}}{2^{n}}\right|} & =\lim _{n \rightarrow \infty} \frac{(n+1)|x+2|}{2 n} \\
& =\lim _{n \rightarrow \infty} \frac{|x+2|}{2} \frac{1+\frac{1}{n}}{1} \\
& =\frac{|x+2|}{2}
\end{aligned}
$$

The series is absolutely convergent for $|x+2|<2$ and divergent for $|x+2|>2$. If $|x+2|=2$, then $u_{n}= \pm n$ and $\frac{n(x+2)^{n}}{2^{n}}=\infty$ so the series diverges.
(29a) Find c_{n} so that the series

$$
\sum_{n=1}^{\infty} c_{n} x^{n}
$$

only converges for $x=0$.
If $c_{n}=n!$, then

$$
\frac{(n+1)!x^{n+1}}{n!x^{n}}=(n+1) x
$$

These ratios go to ∞ unless $x=0$, so the series diverges by Ratio Test unless $x=0$.
(29b) Find c_{n} so that the series

$$
\sum_{n=1}^{\infty} c_{n} x^{n}
$$

converges for all values of x.
If $c_{n}=\frac{1}{n!}$, then

$$
\frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}=\frac{x}{n+1}
$$

These ratios go to 0 for any x, so the series converges by Ratio Test for any x.

