Solutions - 9.2 continued

(1) Show whether the following series is absolutely convergent, conditionally convergent or
divergent.
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The series is absolutely convergent by the Ratio Test.

(2) Show whether the following series is absolutely convergent, conditionally convergent or
divergent.
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The series is divergent by the Ratio Test.

(5) Show whether the following series is absolutely convergent, conditionally convergent or
divergent.
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The series is divergent by the Ratio Test.

(16) Show whether the following series is absolutely convergent, conditionally convergent or
divergent.
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The series is absolutely convergent by the Ratio Test.

(17) Find all values of z for which the power series converges.
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The series is absolutely convergent for |z| < 1 and divergent for |z| > 1. If |z| = 1, then
u, = £(n+ 1) and lim,,_(n + 1)2™ = oo so the series diverges.

(20) Find all values of x for which the power series converges.
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Use Ratio Test.
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The series is absolutely convergent for |z + 2| < 2 and divergent for |z + 2| > 2. If

|z + 2| = 2, then u, = £+n and 22"

5 = 00 s0 the series diverges.

(29a) Find ¢, so that the series
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These ratios go to oo unless x = 0, so the series diverges by Ratio Test unless x = 0.
(29b) Find ¢, so that the series
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converges for all values of x.
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These ratios go to 0 for any x, so the series converges by Ratio Test for any .



