Solutions - 9.3
(1) Show that the sequence {f,,} converges to f for each x in I. Determine whether or not
the convergence is uniform.
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If x = 0, each function is 0 so convergence is clear. If x > 0, then the denominators go
to 0o so the functions go to 0.

Let € > 0 be given. Assume n > N. If x =0, any N works. Assume z > 0.

2z ol — 2z
1+nz  l+4nzx

2x

< -
nx

B 2

on

< €

The last step holds if N > % Since N does not depend on x, convergence is uniform.

(4) Show that the sequence {f,} converges to f for each x in I. Determine whether or not
the convergence is uniform.
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Convergence follows from 1’Hopital’s rule.
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Let € > 0 be given. Assume n > N.
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The last step holds if N > % Since N does not depend on x, convergence is uniform.

(5) Show that the sequence {f,} converges to f for each x in I. Determine whether or not
the convergence is uniform.
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Convergence follows from I’'Hopital’s rule (unless = 0, in which case convergence is
clear).
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Let € > 0 be given. Assume n > N. If x =0, any N works. Assume z > 0.
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The last step holds if N > % Since N does not depend on x, convergence is uniform.



