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Abstract. The generalized Bochner-Riesz operator SR,λ may be defined as

SR,λf(x) = F−1

[(
1−

ρ

R

)λ
+
f̂

]
(x)

where ρ is an appropriate distance function and F−1 is the Inverse Fourier

Transform. The behavior of SR,λ on Lp(Rd×R) is described for ρ(ξ′, ξd+1) =

max{|ξ′|, |ξd+1|}, a rough distance function. We conjecture that this operator

is bounded on Rd ×R when λ > max{d( 1
2
− 1

p
)− 1

2
, 0} and p < 2+ 6

d−3
, and

unbounded when p ≥ 2 + 6
d−3

. This conjecture is verified for large ranges of

p.

Introduction

Let S denote the space of Schwartz functions (smooth, rapidly decaying at ∞)

on Rd. For f ∈ S, the Fourier transform f̂ is defined as follows

(0.1) f̂(ξ) =

∫

Rd

e−ix·ξf(x)dx

We also have the inverse Fourier transform

(0.2) F−1[g](x) = 1

(2π)d

∫

Rd

eix·ξg(ξ)dξ

For f ∈ S, we have F−1[f̂ ] = f . One can extend the definition of f̂ to f ∈ S ′
(S ′ denotes the dual of S, the space of tempered distributions). However, when
one extends the Fourier transform, it is not an integrable function in general. One

hopes to make sense of the inverse Fourier transform integral, F−1[f̂ ] for f ∈ Lp,
as a limit. Generalized Bochner-Riesz Means attempt to address this question.

We define distance functions to be ρ which are continuous on Rd and satisfy

ρ(tx) = tρ(x), t > 0

ρ(x) > 0 if x 6= 0

We define the generalized Bochner-Riesz operator SR,λ as follows:

(0.3) SR,λf(x) = F−1[
(
1− ρ

R

)λ
+
f̂ ](x)

Here (g(ξ))+ = max{g(ξ), 0} is the positive part. Note that as R→∞, SR,λf → f
for f ∈ S. Also note that SR,λf → f for f ∈ L2 by Plancherel’s theorem. On
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general principals, the question of convergence on other Lp spaces is equivalent to
the question of boundedness of the operators SR,λ. By scaling, we may also assume
that R = 1. From now on we will focus on the boundedness of Sλ = S1,λ on Lp.

The generalized Bochner-Riesz operator has been studied extensively in the case
where ρ(ξ) = |ξ|. In this case, the operator represents “standard” Bochner-Riesz
means (referred to later as spherical means, as the set |ξ| = 1 is a sphere). In 1971,
Fefferman [6] showed that for spherical means to be bounded on Lp, it is necessary

to have λ > λ∗(p) = max{d
∣∣∣ 12 − 1

p

∣∣∣ − 1
2 , 0}. The Bochner-Riesz conjecture states

that this is both necessary and sufficient.
In 1972, Carleson and Sjölin verified the conjecture in R2 [3]. In 1973, Fefferman

showed a connection between the Restriction Conjecture for the sphere and the
Bochner-Riesz conjecture [7]. Recent progress on the Restriction Conjecture has
used a bilinear approach (as in [20]) and recently Lee adapted Fefferman’s argument
to apply the bilinear results directly to spherical means [10]. This approach applied
to the recent bilinear result of Tao [19] proves the Bochner-Riesz conjecture for
p > 2 + 4

d
for d ≥ 3, the best current range of p.

While the case of ρ(ξ) = |ξ| provides an interesting test case, it is much sim-
pler than the question of general ρ. If one wishes to study Sλ with a ρ which
is not smooth, a good example to consider is ρ(ξ) = max{|ξ ′|, |ξd+1|} where ξ =
(ξ′, ξd+1) ∈ Rd ×R. For this ρ, we denote the multiplier by mλ.

(0.4) mλ(ξ) = (1−max{|ξ′|, |ξd+1|})λ+
The support of mλ is a cylinder. For ξ near |ξ′| = 1, mλ = (1 − |ξ′|)λ+ which is

the multiplier for spherical means in Rd. Note that this relationship is why we
define this new ρ for ξ ∈ Rd ×R (as opposed to Rd−1 ×R). This way the same
critical index λ∗(p) will apply for spherical means and the cylinder multiplier, as
well as the cone multiplier (defined below, also on Rd ×R). For ξ near |ξd+1| = 1,
mλ = (1 − |ξd+1|)λ+ which is the multiplier for spherical means in R1. Spherical
means in R1 are easily shown to be bounded for all p ≥ 1 when λ > 0, which
is weaker than the λ > λ∗(p) condition on spherical means in Rd. Given these
observations, one might expect that this cylindrical operator would be bounded for
the same range of λ as spherical means in Rd. Interestingly, there is a significant
difference.

This problem was previously studied by Luers [11] in 1988. He was able to
obtain several results. First, when d = 2, the inverse Fourier transform of mλ is in
L1 for λ > 1

2 . It follows that Sλ is bounded for all p ≥ 1 when d = 2 and λ > 1
2 .

Second, when d ≥ 3 and λ∗(p) ≥ 1, then Sλ is unbounded for all λ. This is curious,
since with spherical means there is always some large λ for which the operator is
bounded. Third, Sλ is bounded for the relatively small range where λ > 1 − 1

d+1

and | 1
p
− 1
2 | < 1

d+1 . Lastly, he showed the kernel F−1[mλ] is in L
p when λ > λ∗(p)

and λ∗(p) < 1. We conjecture that the operator Sλ is bounded when λ > λ∗(p)
and λ∗(p) < 1.

The method used by Luers was to make explicit computations of the kernel
and then estimate it as carefully as possible. Here, we will apply more modern
methods, decomposing the multiplier on the Fourier Transform side. We explain
the curious necessary condition λ∗(p) < 1 which limits the range of p. We also
greatly improve the range of λ for which Sλ is bounded while relating it to more
understood operators such as spherical means.
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Figure 1. Regions of interest: here the solid line is where |ξ ′| = 1,
the dashed line is where |ξd+1| and the dotted line is where |ξ′| =
|ξd+1|.

Our multiplier mλ(ξ) is supported on a cylinder but it behaves very differently
than another multiplier supported on a cylinder given by (1−|ξ ′|)λ(1−|ξ|d+1)λ. This
second multiplier represents a simple composition of two spherical means operators.
The significant difference is that the multiplier mλ is not smooth where |ξ′| =
|ξd+1|, a region with the shape of a light cone. So, we expect that near |ξ ′| = 1
and |ξd+1| = 1 our multiplier will have the same boundedness properties as the
spherical means of the appropriate lower dimensions. However, we also note that
near |ξ′| = |ξd+1|, our multiplier will relate to the cone multiplier. There is also
an additional complication which we must address. Upon close inspection we see
that the non-smoothness where |ξ′| = |ξd+1| becomes more severe as we approach
|ξ′| = |ξd+1| = 1. This will be discussed once we get into the proof.

The cone multiplier is a variation of Generalized Bochner-Riesz Means which
has also been deeply investigated. Here we consider an operator similar to Sλ with

ρ(ξ) = |ξ′|
|ξd+1|

. However, we also introduce a cutoff in |ξd+1| to avoid 0 and ∞. Let

h(ξ) = 1− |ξ′|
|ξd+1|

. We define the cone multiplier operator Cλ

(0.5) Cλf(x) = F−1
[
(h)λ+κ(1− |(·)d+1|)f̂

]
(x)

where (ξ′, ξd+1) ∈ Rd ×R and κ ∈ C∞0 is supported in (− 12 , 12 ). The nature of the
curvature of the cone (total curvature non-vanishing, but always with one vanishing
principal curvature) make it a significantly different problem than spherical means.

It is conjectured that Cλ is bounded for all λ > λ∗(p), the same as spherical
means in Rd. The necessity of this conditions follows from its necessity for spher-
ical means in Rd, via a theorem of de Leeuw (see [8] for a proof due to Jodeit).
Techniques can to some extent be transferred between spherical means and the cone
multiplier. However, progress on the cone multiplier has somewhat lagged behind
that of spherical means (see [12], [2]).

A major breakthrough was made by Wolff in 2000 [21], when he showed the first
sharp bounds on the cone multiplier, in any dimension, for any p (he proved the
sharp bound in R2 ×R for large p). His approach used the geometry of how thin
tubes intersect each other, combined with an induction on scales argument. For this
approach, it turns out that the cone offers certain advantages over Bochner-Riesz
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and for once the cone was leading the way. This result was extended to higher
dimensions by ÃLaba and Wolff [9].

1. Results

Once our multiplier is decomposed appropriately, it will have qualitative similar-
ities with the sphere multiplier and the cone multiplier, as well as cone multipliers
truncated to different heights. However it will not be exactly the same so we will
have to refer to the method of proof for results pertaining to these types of multi-
pliers.

The conjectured sharp Lp → Lp result for our cylindrical multiplier would be
to have boundedness when λ > λ∗(p) for p such that λ∗(p) < 1. The λ∗(p) < 1
condition in the conjecture comes from the conical area of non-smoothness, where

our multiplier has qualitative similarities to the multiplier (1− |ξ′|
|ξd+1|

)1, which is the

cone multiplier and with λ = 1 (see Proposition 2.11 where we verify this condition,
originally discovered by Luers [11]). Therefore the cylindrical multiplier should be
unbounded on Lp → Lp for p such that λ∗(p) ≥ 1. For notation purposes we set
λ∗(∞) = d

2 − 1
2 .

The results vary depending on dimension, since different sphere and cone tech-
nology exists in different dimensions. Our various results are as follows:

Theorem 1.1. The operator Sλ is bounded from Lp(R2 ×R) → Lp(R2 ×R) for
λ > λ∗(p), 1 ≤ p ≤ ∞.

Theorem 1.2. The operator Sλ is bounded from Lp(R3 ×R) → Lp(R3 ×R) for
λ > λ∗(p), 2 + 4

d
= 10

3 < p <∞.

Theorem 1.3. The operator Sλ is bounded from Lp(R4 ×R) → Lp(R4 ×R) for
λ > λ∗(p), 2 + 4

d
= 3 < p < 2 + 6

d−3 − 6
61 = 482

61 .

Theorem 1.4. If d ≥ 5, the operator Sλ is bounded from Lp(Rd×R)→ Lp(Rd×R)

for λ > λ∗(p), 2 + 4
d
< p < 8d2+2d−6

4d2−11d−3 = 2 + 6
d−3 − 6

(4d+1)(d−3) .

2. Proof

We begin by defining two new operators, Sδ and Cδ, related to spherical means
and the cone multiplier respectively.

Ŝδf(ξ) = ϕ(δ−1(1− |ξ|))f̂(ξ)(2.1)

Ĉδf(ξ) = ϕ
(
δ−1h(ξ)

)
κ((1− |ξd+1|))f̂(ξ)(2.2)

where h(ξ) = 1− |ξ′|
|ξd+1|

By using a dyadic decomposition, it is easy to see that the study of spherical means
and the cone multiplier can by reduced to the study of these two new operators. ϕ
is in the class Φ, which consists of all function in C∞0 with the following properties:

support of ϕ ⊂ [0, 2]∣∣∣∣
∂|α|

∂ξα
ϕ

∣∣∣∣ . C for all |α| ≤ d+ 2
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where α = (α1, . . . , αd+1) is a standard multi-index and C is a fixed constant. κ is
a C∞0 function supported in (− 12 , 12 ). δ is assumed to be a small positive number.
The conjectured sharp bounds for Sδ and Cδ are

‖Sδg‖Lp(Rd) . δ−λ‖g‖Lp(Rd)(2.3)

‖Cδf‖Lp(Rd×R) . δ−λ‖f‖Lp(Rd)(2.4)

for all λ > λ∗(p)

Note that throughout the exposition, we will be using the symbol . to denote
that one expression is less than the other up to a constant which depends only on
fixed values such as dimension and constants ε which are fixed at the beginning of
proofs.

We now make a preliminary decomposition, then group the pieces into four cases
which capture the nature of the multiplier mλ = (1 −max{|ξ′|, |ξd+1|})λ+. Choose

ϕ ∈ C∞0 (R) so that the support of ϕ is contained in [ 12 , 2], ϕ 6= 0 on [ 34 ,
3
2 ] and∑∞

j=2 ϕ(2
jt) ≡ 1 for t ∈ (0, 14 ). Choose ϕ1 so that ϕ1(t) +

∑∞
j=2 ϕ(2

j(1 − t)) ≡ 1

for t ∈ [0, 1).
Let

mjk(ξ) = ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξd+1|))mλ(ξ) for j, k ≥ 2(2.5)

m1k(ξ) = ϕ1(|ξ′|)ϕ(2k(1− |ξd+1|))mλ(ξ) for k ≥ 2

mj1(ξ) = ϕ(2j(1− |ξ′|))ϕ1(|ξd+1|)mλ(ξ) for j ≥ 2

m11(ξ) = ϕ1(|ξ′|)ϕ1(|ξd+1|)mλ(ξ)

Then, using the Triangle inequality,

(2.6) ‖mλ‖Mp ≤
∞∑

k,j=1

‖mjk(ξ)‖Mp

where ‖mλ‖Mp denotes the operator norm of f → F−1[mλf̂ ].
We divide the sum into four parts and deal with each of them separately. The

four parts are

Case (i) : j ≥ k + 2: When j ≥ k+2 the support of mjk is near the “sides”
of the cylinder, where |ξ′| = 1. In this region mλ = (1 − |ξ′|)λ, so one
expects the multiplier to behave like spherical means in Rd.

Case (ii) : k ≥ j + 2: The support of mjk is near the “top” of the cylinder,
where |ξd+1| = 1. In this region mλ = (1 − |ξd+1|)λ which is a simple
multiplier.

Case (iii) : |k − j| ≤ 1, k, j 6= 1: This region contains the set where |ξ ′| =
|ξd+1| (except near the origin). This is the most interesting case, where we
explore the relation between mλ and the cone multiplier.

Case (iv) : |k − j| ≤ 1, k = 1 or j = 1: We simply use scaling to extend our
results from the first three cases to the center of the cylinder.

2.1. Case (i): j ≥ k + 2, Near |ξ′| = 1.

Lemma 2.1. Let 2 ≤ p <∞ and λ > λ∗(p). Assume ‖Sδf‖Lp(Rd) . δ−λ‖f‖Lp(Rd)

with constant independent of the choice of ϕ ∈ Φ. Then the following sum converges.

(2.7)

∞∑

k=1

∞∑

j=k+2

‖mjk‖Mp
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This sum represents all multiplier pieces where j ≥ k + 2.

Proof. Fix a small ε > 0.
When j ≥ k + 2 ≥ 4, we have ρ(ξ) = |ξ′|, so

mjk(ξ) = ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξd+1|))(1− |ξ′|)λ

Note that

‖mjk‖Mp
= ‖S′2−j ,d‖Lp(Rd)→Lp(Rd)‖S̃2−k‖Lp(R)→Lp(R) where

S′2−j ,df = F−1[ϕ(2j(1− |ξ′|))(1− |ξ′|)λ] ∗ f and

S̃2−kf = F−1[ϕ(2k(1− |ξd+1|))] ∗ f
We note that for S′2−j ,d

we can use our assumption with δ = 2−j as follows.

Define ϕ̃(t) = tλϕ(t). Then

(2.8) S′2−j ,df = 2−jλF−1[ϕ̃(2j(1− |ξ′|))] ∗ f
Since results such as [10] require only that ϕ a C∞0 function, we obtain the following
resulting bound. Here we are also using the fact that since the operator S ′2−j ,d

acts

only on the first d variables, leaving the ξd+1 variable independent, we need only
investigate the corresponding operator on Rd, for which we use the same name.

(2.9) ‖S′2−j ,d‖Lp(Rd)→Lp(Rd) . 2−jλ2j(λ
∗(p)+ε) p0 ≤ p <∞

The operator S̃2−k only acts on the last variable, so we consider the corresponding
operator on R. A simple change of variable reveals that the L1-norm of the kernel
F−1[ϕ(2k(1 − |ξd+1|))] is bounded independent of k. Using this fact and Young’s
inequality gives us the following,

‖S̃2−kf‖Lp(R) = ‖F−1[ϕ(2k(1− |ξd+1|))] ∗ f‖Lp(R)

≤ ‖F−1[ϕ(2k(1− | · |))]‖L1(R)‖f‖Lp(R)

. ‖f‖Lp(R)

The same bounds for j and k such that j ≥ k + 2 = 3 can be derived in a
similar way. The operator associated with the multiplier ϕ1(|ξd+1|), which replaces
ϕ(2k(1− |ξd+1|)) in the above calculation when k = 1, is an operator bounded for
all Lp with norm independent of k. The approach we used on ϕ(2k(1−|ξd+1|)) will
easily show this. Now we can sum over the range j ≥ k + 2.

(2.10)

∞∑

k=1

∞∑

j=k+2

‖mjk‖Mp .

∞∑

k=1

∞∑

j=k+2

2j(−λ+λ∗(p)+ε)

This sum converges if λ > λ∗(p) + ε. ¤

2.2. Case (ii): k ≥ j + 2, Near |ξd+1| = 1. In this case, we are near the “top” of
the cylinder, where |ξd+1| = 1. However, since this case includes pieces which are
also near the “sides” (when j ≈ k and j, k are large), we must still apply results for
Sδ.

Lemma 2.2. Let 2 ≤ p <∞ and λ > λ∗(p). Assume ‖Sδf‖Lp(Rd) . δ−λ‖f‖Lp(Rd)

with constant independent of the choice of ϕ ∈ Φ. Then the following sum converges.

(2.11)

∞∑

j=1

∞∑

k=j+2

‖mjk‖Mp
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This sum represents all multiplier pieces where k ≥ j + 2.

Proof. Fix a small ε > 0.
When k ≥ j + 2 ≥ 4, we have ρ(ξ) = |ξd+1|, so

mjk(ξ) = ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξd+1|))(1− |ξd+1|)λ

Similarly to the j ≥ k + 2 case,

‖mjk‖Mp
= ‖S2−j ,d‖Lp(Rd)→Lp(Rd)‖S̃′2−k‖Lp(R)→Lp(R) where

S2−j ,df = F−1[ϕ(2j(1− |ξ′|))] ∗ f and

S̃′2−kf = F−1[ϕ(2k(1− |ξd+1|))(1− |ξd+1|)λ] ∗ f

For S2−j ,d we can directly apply assumption with δ = 2−j . Here, as in Case
(i), we use the fact that S2−j ,d acts only on the first d variables. We obtain the
following bound:

(2.12) ‖S2−j ,d‖Lp(Rd)→Lp(Rd) . 2j(λ
∗(p)+ε) p0 ≤ p <∞

For the operator S̃′2−k , we note that using ϕ̃ as defined above,

(2.13) S̃′2−kf = 2−kλF−1[ϕ̃(2k(1− |ξd+1|))] ∗ f

We use the exact same reasoning as with S̃2−k in Case (i), replacing ϕ with ϕ̃
and noting the extra 2−kλ gain. We now insert these bounds into our sum.

(2.14)
∞∑

j=1

∞∑

k=j+2

‖mjk‖Mp .

∞∑

j=1

∞∑

k=j+2

2j(λ
∗(p)+ε)2−kλ

This sum also converges if λ > λ∗(p) + ε. ¤

2.3. Case (iii): |k − j| ≤ 1, k, j 6= 1, Near |ξ′| = |ξd+1|. In this region, we use
the cone multiplier techniques in Rd×R to analyze the multipliers mjk. We begin
by subtracting a simpler multiplier in order to make our multiplier zero on the
cone (where it is non-smooth). We then decompose the multiplier dyadically with
respect to distance from the cone. This decomposition is done in detail in 2.3.3.

After decomposing, our pieces will not quite be cones, but rather “truncated
cones”. In the ξd+1 variable, our pieces will be supported in an interval of size
about 2−j due to the ϕ(2k(1 − |ξd+1|)) (recall k ≈ j in Case (iii)). This is in
contrast to the normal cone multiplier, where the multiplier is supported in an
interval of size about 1 in the ξd+1 variable (see line (2.2)). These truncated cones
will capture the effects of the increasing non-smoothness along the cone, which was
alluded to earlier in the introduction.

We develop two bounds on these pieces. The first will be stronger for p near
2 + 2

d−1 , where λ
∗(p) = 0. The second will be stronger for p near 2 + 6

d−3 , where

λ∗(p) = 1. Recall that due to the relationship between our multiplier and the cone,
the operator will be unbounded when λ∗(p) > 1.
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2−j

2−M

-

6

|ξ′|

|ξd+1|

Figure 2. Support of the decomposition pieces

2.3.1. λ∗(p) near 0. Suppose j ≥ 2. Let ϕj be a function in C∞0 (Rd ×R) with the
following properties:

supp(ϕj) ⊂ {ξ ∈ Rd ×R,
1

100
< 2j(1− |ξ′|) < 100

and
1

100
< 2j(1− |ξd+1|) < 100}

|∂
|α|

∂ξα
ϕj(ξ)| ≤ Cϕ2

|α|j for all |α| ≤ d+ 2

where Cϕ is independent of j and ξ.

We study the multiplier ϕ(2Mh(·))ϕj , where h(ξ) = 1− |ξ′|
|ξd+1|

as defined in line

(2.2) and in the introduction. The decomposition in 2.3.3 will reduce Case (iii) to
multipliers of this type. The ϕj term is supported in a ring a distance 2−j from
both the top and sides of the cylinder. It can be thought of as the result of rotating
a cube with sidelength 2−j around the ξd+1 axis. The ϕ(2

Mh(·)) term is supported
a distance 2−M from the light cone. Together these are supported in a truncated
cone of thickness 2−M and “height” 2−j in ξd+1 (see figure 2).

For the following proposition we introduce an equispaced cutoff χ. Let χ ∈ C∞0 ,
suppχ ⊂ (−1, 1), and ∑∞

N=−∞ χ(· −N) ≡ 1.

Proposition 2.3. Let 2 ≤ p0 ≤ pc <∞ and ϕ ∈ Φ. Assume we have the following
bounds

(2.15)
∥∥∥ϕ(2Mh(·))χ

(
2M(1+ε)

(
(·)d+1 −

ν

2M(1+ε)

))
ϕj

∥∥∥
Mp0

≤ C1Cϕ2
M(λ∗(p0)+ε)

∥∥ϕ(2Mh(·))ϕj

∥∥
Mpc

≤ CϕC22
M(λ∗(pc)+ε)(2.16)

where ν is any integer, C1 and C2 are independent of M , j, and ϕj.
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Then for p0 ≤ p ≤ pc <∞

∥∥ϕ(2Mh(·))ϕj

∥∥
Mp . Cϕ2

(M−j)

(
1
p
− 1
pc

1
p0

− 1
pc

)
(1− 2

p0
)

2M(λ∗(p)+ε)(2.17)

for M ≥ j
In this proposition, (2.15) is a bound on the multiplier ϕ(2Mh(·))ϕj truncated to

a height of 2−M(1+ε). We then scale this bound to a useful bound on ϕ(2Mh(·))ϕj .

Proof. We begin by decomposing the support of ϕ(2Mh(·))ϕj into rectangular
“plates” in the standard way, as in [12]. First, choose ψl ∈ C∞0 (Rd), l = 0, 1, . . . , L,

such that the support of ψl has angular width less than π
4 ,
∑L

j=0 ψl ≡ 1 and L
depends only on d. We assume ψ0 is supported in the region centered at the ξd-axis
and we now investigate ψ0(ξ

′)ϕj(ξ). Bounds for ψl(ξ
′)ϕj(ξ), l = 1, 2, . . . , L, follow

by symmetry.

(2.18) SM =
{
N = {N1, . . . , Nd−1} ∈ Zd−1 : −2M

2 ≤ Nn ≤ 2
M
2 , 1 ≤ n ≤ d− 1

}

(2.19) ΦM,N(ξ) = ϕ(2Mh(ξ))

d−1∏

n=1

χ

(
2
M
2

(
ξn
ξd+1

− Nn

2
M
2

))
ψ0(ξ

′)

(2.20) ϕ(2Mh(ξ))ϕj(ξ)ψ0(ξ
′) =

∑

N∈SM

ΦM,N(ξ)ϕj(ξ)

We may assume that M ≥ j − 10 (or M ≥ 0 if j − 10 < 0) since

supp
[
ϕ(2Mh(·))

]
∩ supp ϕj = ∅ if M < j − 10

Note that
∑

N ΦM,Nϕj is supported on a cone truncated to height 2−j . Also,
the terms ΦM,Nϕj are supported in rectangular plates lying against the cone with
dimensions

2−M × 2−
M
2 × · · · × 2−

M
2︸ ︷︷ ︸

d−1 times

×2−j

We further decompose in ξd+1, dividing the decomposed cone into cones truncated

to a height 2
−M

ch . The constant ch determines the size of the decomposition. In
proving Proposition 2.3, we will decompose using ch = 1 − ε. This decomposition
is in some sense excessively severe but it allows the multiplier to be related to
spherical means in Rd (see Lemma 2.12). Later in 2.3.2, Proposition 2.5 will use a
much more efficient decomposition with ch = 2.

χν(ξd+1) = χ

(
2
M
ch

(
ξd+1 −

ν

2
M
ch

))
(2.21)

ΦM,N(ξ) =
2
M
ch∑

ν=−2
M
ch

χν(ξd+1)ΦM,N(ξ)(2.22)

=
2
M
ch∑

ν=−2
M
ch

ΦM,N,ν(ξ)(2.23)
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For now, we only use the vertical decomposition in ν and not the plates decomposi-
tion in N. Later however, the plates decomposition will be essential in determining
estimates in the form of (2.15) and (2.16).

We use the following lemma to take advantage of the equispaced aspect of the
vertical decomposition.

Lemma 2.4. Let χ̃ be defined so that χ̃ ≡ 1 on supp(χ) ⊂ (−1, 1) and χ̃ ≡ 0

outside (−32 ,
3
2 ). Let χ̃ν(ξd+1) = χ̃

(
2
M
ch

(
ξd+1 − ν

2
M
ch

))
, and let fν = F−1[χ̃ν ∗ f ].

Let V be a finite interval in the integers Z. Then for 2 ≤ p ≤ ∞, 1
p′

+ 1
p
= 1 and

f ∈ Lp,

‖
∑

ν∈V

F−1[χν ] ∗ f‖Lp .

(∑

ν∈V

‖F−1[χν ] ∗ f‖p
′

Lp

) 1
p′

(2.24)

=

(∑

ν∈V

‖F−1[χν ] ∗ fν‖p
′

Lp

) 1
p′

(2.25)

and

(2.26)

(∑

ν∈V

‖F−1[χν ] ∗ fν‖p
′

Lp

) 1
p′

. (card(V))(1− 2
p
)‖f‖Lp

This lemma is easily verified for p = 2 using Plancherel’s theorem.
The first inequality in the lemma follows by interpolation and duality from the

p = 2 bound and the following p = 1 bound (triangle inequality).

‖
∑

ν

F−1[χν ] ∗ f‖L1 ≤
∑

ν

‖F−1[χν ] ∗ f‖L1

=

(∑

ν

‖F−1[χν ] ∗ f‖1L1

)1

For the second inequality in the lemma, the L∞ bound follows from the uniform (in
ν) boundedness of the operators F−1[χν ] ∗ f . The lemma follows by interpolation.

(∑

ν∈V

‖F−1[χν ] ∗ fν‖L∞
)

=

(∑

ν∈V

‖F−1[χν ] ∗ f‖L∞
)

.

(∑

ν∈V

‖f‖L∞
)

= (card(V))‖f‖L∞

Using this lemma, we obtain the following Lp0 bound. Here V will consist of
those ν such that the support of χν intersects the support of ϕj .

(2.27)
∥∥F−1

[
ϕ(2Mh(·))ϕjψ0(·)

]
∗ f
∥∥
Lp0
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=

∥∥∥∥∥
∑

ν∈V

∑

N∈SM

F−1[ΦM,N,νϕj ] ∗ fν
∥∥∥∥∥
Lp0

.


∑

ν∈V

∥∥∥∥∥F
−1[

∑

N∈SM

ΦM,N,νϕj ] ∗ fν
∥∥∥∥∥

p′0

Lp0




1
p′0

(2.28)

. Cϕ2
M(λ∗(p0)+ε)

(∑

ν∈V

‖fν‖p
′
0

Lp0

) 1
p′0

(2.29)

. 2M(λ∗(p0)+ε)t
(1− 2

p0
)

Mj ‖f‖Lp0(2.30)

where card(V) = tMj and tMj is defined as follows.

tMj .

{
1 if j − 10 ≤M ≤ chj
2
M
ch
−j

if M > chj
(2.31)

In this case, since ch = 1− ε, we effectively have tMj = 2M−j2Mε. By interpolating
between line (2.30) and line (2.16), we obtain the bounds of the proposition. ¤

2.3.2. λ∗(p) near 1. Proposition 2.3 is designed, with its severe decomposition in
ξd+1, to allow us to use Bochner-Riesz results from Rd. However, the inefficiency in
this decomposition and Lemma 2.4 limit results to p where λ∗(p) is small. There is
too much loss for the eventual sum inM to converge if λ∗(p) is near 1. We introduce
Proposition 2.5, which will not apply for λ∗(p) small, but which will significantly

improve upon the

(
1
p
− 1

pc
1
p0
− 1

pc

)
(1− 2

p0
) loss in Proposition 2.3 for λ∗(p) near 1.

We obtain a result for truncated cones by combining a square function estimate
with a result for the Nikodym maximal function for light rays. For the square
function estimate we can adapt Bourgain’s argument [1] or in R2 × R there is a
result of Mockenhaupt, Seeger and Sogge (MSS) [13]. Mockenhaupt, Seeger and
Sogge [14] and Skarabot [17] have determined maximal function results, and in
R2 ×R there is a maximal function bound due to Córdoba [5].

The Nikodym maximal function for light rays Mδf can be defined as follows:

τδ(θ) = δ × · · · × δ × 1 tube with long direction(2.32)

(ξ′, ξd+1) = (θ, 1), centered at the origin, θ ∈ Sd−1

Mδf(x) = sup
θ∈Sd−1

δ−(d)
∫

τδ(θ)

|f(x+ y)|dy(2.33)

This maximal function takes maximum of averages over tubes pointing in the direc-
tion of light rays (π4 from the horizontal). The conjectured bound for this maximal
function is

‖Mδf‖Lp(Rd×R) . δ1−
d
p ‖f‖Lp(Rd×R)

Proposition 2.5. Let p0 ≥ 2(d+1)
d−1 and let 1

q0
+ 2

p0
= 1 (we say q0 = (p0

2 )
′). Assume

the following bound on the Nikodym Maximal function for Light Rays:

‖Mδf‖Lq0 . δ−aδ1−
d
q0
−ε‖f‖Lq0 a > 0(2.34)

Also assume that for some pc > p0,

(2.35)
∥∥ϕ(2Mh(·))ϕj

∥∥
Mpc
≤ CϕC22

M(λ∗(pc)+ε)
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independent of ϕ ∈ Φ (Cϕ is from the definition of ϕj in 2.3.1). Then for p0 ≤ p ≤
pc

∥∥ϕ(2Mh(·))ϕj

∥∥
Mp . Cϕ2

(
(M2 −j)

(
1
2−

1
p0

)
+M( a4 )

)( 1
p
− 1
pc

1
p0

− 1
pc

)

2M(λ∗(p)+ε)(2.36)

for M ≥ 2j

and

∥∥ϕ(2Mh(·))ϕj

∥∥
Mp . Cϕ2

(M−j)( a2 )

(
1
p
− 1
pc

1
p0

− 1
pc

)

2M(λ∗(p)+ε)(2.37)

for j ≤M ≤ 2j

Throughout the proof of Proposition 2.5 we will be using a decomposition in

ξd+1 of height 2−
M
2 . Lemma 2.4 will apply with ch = 2. We set ch = 2 in the

definitions of χν , tMj , ΦM,N,ν , etc.

Proof. To prove this proposition at p0, we follow a standard strategy of first ap-
plying a square function estimate, followed by a maximal function, then returning
from the square function back to f . For an example of this approach, one can see
[4] where Córdoba proves the Bochner-Riesz conjecture in R2 in this way. We will
require the following lemmas.

We begin with the square function estimate. We plan to replace the Lp-norm
with a Lp(l2)-norm over the terms F−1[ΦM,N,ν ] ∗ f . We do this by covering our

truncated cone with 2−
M
2 -cubes and following the method of Bourgain [1]. However,

it is convenient to have each ΦM,N,ν supported in a single cube, so we have to enlarge
the cubes slightly.

Fix M . Note that the multiplier (1−max{|ξ′|, |ξd+1|})λ+ is supported in a cube
of radius 2 (it is smaller than this, but we take extra to be safe). Let {Q} be a

tiling of this support cube by cubes of sidelength 2−
M
2 . Choose χ̃0 ∈ C∞0 (Rd) to

be identically 1 on the unit cube and supported in the double of the unit cube. Let

χ̃Q(ξ
′) = χ̃0(C2

M
2 (ξ′ − ξ′Q)), where ξ′Q is the center of Q. C is chosen so that each

ΦM,N,νχQ ≡ 0 for all but a finite number (independent of M,N, ν) of Q, and there
is at least one Q, denoted QN, such that χ̃QN

≡ 1 on the support of ΦM,N,ν . Let
χN,ν = χ̃QN

(ξ′)χ̃ν(ξd+1).

Lemma 2.6. Let p ≥ 2(d+1)
d−1 . Let

Q = {(N, ν) : supp(χN,ν) ∩ supp(ϕ(2Mh(·))ϕj) 6= ∅
Then

(2.38)

∥∥∥∥∥∥
∑

(N,ν)∈Q

F−1[χN,ν ] ∗ f

∥∥∥∥∥∥
Lp

.

(card(V))( 12− 1
p
)2(

M
2 )(λ

∗(p)+ε)

∥∥∥∥∥∥∥


 ∑

(N,ν)∈Q

|F−1[χN,ν ] ∗ f |2



1
2

∥∥∥∥∥∥∥
Lp

Here V = {ν ∈ Z : (N, ν) ∈ Q for some N}. In the future, we denote F−1[χN,ν ] ∗
f = fN,ν .
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Note that in the above lemma, it is important that the sum runs over only those
cubes which intersect the truncated cone where the multiplier piece is supported.
The proof will follow in Section 3.1.

Once we have decomposed the operator, the pieces of the multiplier have con-
volution kernels which can be bounded by the simple operators, as detailed in the
following lemma.

Lemma 2.7. For fixed N ∈ Zd−1, define

ρ(ξ) = |ξ′|
ξ̃0 = center of supp(ΦM,N,νϕj)

ud =
1√
2

(∇ρ(ξ̃0)
−1

)

ud+1 =
1√
2

(∇ρ(ξ̃0)
1

)

{ui}d−1i=1 span

(∇ρ(ξ̃0)⊥
0

)

Then for every choice of integers p1, . . . , pd+1 ≥ 0

|F−1[ΦM,N,νϕj ]| . 2−
M
2 d2−M

d−1∏

i=1

(
1

(1 + |2−M
2 ui · x|)pi

)
(2.39)

· 1

(1 + (|2−Mud · x|)pd
1

(1 + (|2−M
2 ud+1 · x|)pd+1

.

∞∑

m=0

2−m 1

|RN
m|
χRN

m
(x)(2.40)

where RN
m = {x : |ud · x| ≤ 2m2M , |ud+1 · x| ≤ 2m2

M
2 , |ui · x| ≤ 2m2

M
2 for 1 ≤ i ≤

d− 1}. Note that this bound implies that ‖F−1[ΦM,N,νϕj ]‖L1 < C independent of
M ,N,ν and j.

The proof of Lemma 2.7 will be presented in Section 3.2.

Lemma 2.8. Let p ≥ 2. Then

(2.41)

∥∥∥∥∥∥∥


∑

N,ν

|F−1[χN,ν ] ∗ f |2



1
2

∥∥∥∥∥∥∥
Lp

. ‖f‖Lp

This Littlewood-Paley type estimate will allow us to return from a square func-
tion back to a regular norm. Lemma 2.8 is due to Carleson. Proofs can be found in
[5] and [16]. With this formulation, the lemma is relatively easy to verify since the
decomposition is equally spaced and the cutoff functions are merely translations of
each other.

We now proceed with the calculation. We begin with the p0 bound, assuming
M ≥ 2j.

(2.42)

∥∥∥∥∥∥
∑

N,ν

F−1[ΦM,N,νϕj ] ∗ f

∥∥∥∥∥∥
Lp0

=

∥∥∥∥∥∥
∑

N,ν

F−1[ΦM,N,νϕj ] ∗ fN,ν

∥∥∥∥∥∥
Lp0
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. 2(
M
2 −j)( 12−

1
p0
)2(

M
2 )(λ

∗(p0)+ε)

∥∥∥∥∥∥∥


∑

N,ν

|F−1[ΦM,N,νϕj ] ∗ fN,ν |2



1
2

∥∥∥∥∥∥∥
Lp0

(2.43)

∥∥∥∥∥∥∥


∑

N,ν

|F−1[ΦM,N,νϕj ] ∗ fN,ν |2



1
2

∥∥∥∥∥∥∥

2

Lp0

=



∫ ∣∣∣∣∣∣
∑

N,ν

|F−1[ΦM,N,νϕj ] ∗ fN,ν |2
∣∣∣∣∣∣

p0
2




2
p0

= sup
‖ω‖

(
p0
2

)′
≤1

∫ 
∑

N,ν

|F−1[ΦM,N,νϕj ] ∗ fN,ν |2

ω(2.44)

Let ‖ω‖( p02 )′ ≤ 1.

(2.45)

∫ 
∑

N,ν

|F−1[ΦM,N,νϕj ] ∗ fN,ν |2

ω

.

∞∑

m=0

2−m

∫ ∑

N,ν

∣∣∣∣
1

|RN
m|
χRN

m
∗ fN,ν

∣∣∣∣
2

ω

(2.46)

∫ ∑

N,ν

∣∣∣∣
1

|RN
m|
χRN

m
∗ fN,ν

∣∣∣∣
2

ω

≤
∫ ∑

N,ν

(∫
1

|RN
m|
χRN

m
(y)dy

)

·
(∫

1

|RN
m|
χRN

m
(x− y)|fN,ν(y)|2dy

)
ω(x)dx

≤
∫ ∑

N,ν

|fN,ν(y)|2
∫

1

|RN
m|
χRN

m
(x− y)ω(x)dx dy(2.47)

≤
∫ ∑

N,ν

|fN,ν(y)|2M
2−

M
2
ω(y)dy(2.48)

≤

∥∥∥∥∥∥∥


∑

N,ν

|fN,ν |2



1
2

∥∥∥∥∥∥∥

2

Lp0

‖M
2−

M
2
ω‖

L
(
p0
2

)′(2.49)

. ‖f‖2Lp0 2
M(λ∗(p0)+ε)2

M
2 a(2.50)

(2.51) ∥∥∥∥∥
∑

ν∈V

∑

N∈SM

F−1[ΦM,N,νϕj ] ∗ f
∥∥∥∥∥
Lp0

. 2(
M
2 −j)( 12−

1
p0
)2M(λ∗(p0)+ε)2

M
4 a‖f‖Lp0
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Line (2.46) is an application of the Cauchy-Schwartz inequality. In line (2.50), we
use the fact that 1

2 (1− d
( p2 )

′ ) = −λ∗(p).
(2.36) follows by interpolation between (2.51) and the assumed bound at pc.
Now assume j ≤ M ≤ 2j. Here we must change our decomposition slightly.

We still wish to decompose into square plates (so that the maximal function is as
efficient as possible), however now the “height” of our truncated cone is less than

2−
M
2 . Instead we decompose into plates which are 2−M thick and 2−j in every

other direction.

(2.52) S̃M =
{
N = {N1, . . . , Nd−1} : −2j ≤ Nn ≤ 2j for all n = 1, . . . , d− 1

}

(2.53) Φ̃M,N(ξ) = ϕ(2Mh(ξ))

d−1∏

n=1

χ

(
2j
(

ξn
ξd+1

− Nn

2j

))
ψ0(ξ

′)

(2.54) ϕ(2Mh(ξ))ϕj(ξ)ψ0(ξ
′) =

∑

N∈S̃M

Φ̃M,N(ξ)ϕj(ξ)

Note that the terms Φ̃M,Nϕj are supported in rectangular plates lying against the
cone with dimensions

2−M × 2−j × · · · × 2−j

︸ ︷︷ ︸
d times

We use slight variations on Lemmas 2.6 and 2.7.
Similar to the χQN

terms from Lemma 2.6 which defined a decomposition into

cubes of side 2−
M
2 on the Fourier side, we now define new functions χ′N. These new

functions are defined in the same way, except for cubes of side 2−j . Note that since
the truncated cone is just 2−j high, we do not need the ν decomposition in ξd+1.

Lemma 2.9. Let p ≥ 2(d+1)
d−1 . Let

Q′ = {N : supp(χN) ∩ supp(ϕ(2Mh(·))ϕj) 6= ∅
Then

(2.55)

∥∥∥∥∥
∑

N∈Q′

F−1[χ′N] ∗ f
∥∥∥∥∥
Lp

. 2j(λ
∗(p)+ε)

∥∥∥∥∥∥

( ∑

N∈Q′

|F−1[χ′N] ∗ f |2
) 1

2

∥∥∥∥∥∥
Lp

In the future, we denote F−1[χ′N] ∗ f = f̃N.

The proof is identical to that of Lemma 2.6 in Section 3.1.

Lemma 2.10. For fixed N ∈ Zd−1, define

ρ(ξ) = |ξ′|
ξ̃0 = center of supp(Φ̃M,N,νϕj)

ud =
1√
2

(∇ρ(ξ̃0)
−1

)

ud+1 =
1√
2

(∇ρ(ξ̃0)
1

)

{ui}d−1i=1 span

(∇ρ(ξ̃0)⊥
0

)
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Assume j ≤M ≤ 2j. Then for every choice of integers p1, . . . , pd+1 ≥ 0

|F−1[Φ̃M,Nϕj ]| . 2−jd2−M

d−1∏

i=1

1

(1 + |2−jui · x|)pi

· 1

(1 + (|2−Mud · x|)pd
1

(1 + (|2−jud+1 · x|)pd+1
(2.56)

.

∞∑

m=0

2−m 1

|R̃N
m|
χ
R̃N
m
(x)(2.57)

where R̃N
m = {x : |ud·x| ≤ 2m2M , |ud+1·x| ≤ 2m2j , |ui·x| ≤ 2m2j for 1 ≤ i ≤ d−1}.

The proof is the same as that of Lemma 2.7.
Now we simply follow the proof of the M ≥ 2j case, using these new lemmas.

Note that the Nikodym maximal function for light rays will now have index 2M−j

(this is the eccentricity of tubes dual to our new plates).

(2.58)

∥∥∥∥∥
∑

N

F−1[Φ̃M,Nϕj ] ∗ f
∥∥∥∥∥
Lp0

=

∥∥∥∥∥
∑

N

F−1[Φ̃M,Nϕj ] ∗ f̃N
∥∥∥∥∥
Lp0

. 2jλ
∗(p0)

∥∥∥∥∥∥∥


∑

N,ν

|F−1[Φ̃M,Nϕj ] ∗ f̃N|2



1
2

∥∥∥∥∥∥∥
Lp0

(2.59)

∥∥∥∥∥∥

(∑

N

|F−1[Φ̃M,Nϕj ] ∗ f̃N|2
) 1

2

∥∥∥∥∥∥

2

Lp0

=



∫ ∣∣∣∣∣
∑

N

|F−1[Φ̃M,Nϕj ] ∗ f̃N|2
∣∣∣∣∣

p0
2




2
p0

= sup
‖ω‖

(
p0
2

)′
≤1

∫ (∑

N

|F−1[Φ̃M,Nϕj ] ∗ f̃N|2
)
ω(2.60)

Let ‖ω‖( p02 )′ ≤ 1.

(2.61) sup
‖ω‖

(
p0
2

)′
≤1

∫ (∑

N

|F−1[Φ̃M,Nϕj ] ∗ f̃N|2
)
ω

.

∞∑

m=0

2−m

∫ (∑

N

1

|R̃N
m|
χ
R̃N
m
∗ f̃N

)
ω
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∫ (∑

N

1

|R̃N
m|
χ
R̃N
m
∗ f̃N

)
ω ≤

∫ ∑

N

(∫
1

|R̃N
m|
χ
R̃N
m
(y)dy

)

·
(∫

1

|R̃N
m|
χ
R̃N
m
(x− y)|f̃N(y)|2dy

)
ω(x)dx(2.62)

≤
∫ ∑

N

|f̃N(y)|2
∫

1

|R̃N
m|
χ
R̃N
m
(x− y)ω(x)dx dy(2.63)

≤
∫ ∑

N

|f̃N(y)|2M2j−Mω(y)dy(2.64)

≤

∥∥∥∥∥∥

(∑

N

|f̃N|2
) 1

2

∥∥∥∥∥∥

2

Lp0

‖M2j−Mω‖
L

(
p0
2

)′(2.65)

. ‖f‖2Lp0 2
2(M−j)λ∗(p0)2(M−j)a(2.66)

(2.67)

∥∥∥∥∥
∑

N∈SM

F−1[Φ̃M,Nϕj ] ∗ f
∥∥∥∥∥
Lp0

. 2Mλ∗(p0)2
(M−j)a

2 ‖f‖Lp0

As above, interpolation with the assumed bound at p = pc yields (2.37). ¤

2.3.3. Preparation of the Multiplier. We now apply Propositions 2.3 and 2.5 tomjk.
First we decompose mjk into pieces to which the propositions can be applied. Let

µjk(ξ) = mjk(ξ)− ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξd+1|))(1− |ξ′|)λ

=





ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξd+1|))[(1− |ξd+1|)λ−(1− |ξ′|)λ]
if |ξd+1| ≥ |ξ′|

0 if |ξd+1| ≤ |ξ′|
(2.68)

Referring back to the proof of Lemma 2.1, we see that the multiplier we are sub-
tracting,

ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξd+1|))(1− |ξ′|)λ,
is nearly the same as the multipliers considered in Case (i). The only difference is
that here |k − j| ≤ 1, whereas in Case (i) j ≥ k + 2. The same proof applies here,
so

‖ϕ(2j(1− |(·)′|))ϕ(2k(1− |(·)d+1|))(1− |(·)′|)λ‖Mp . 2j(−λ+λ∗(p)+ε)

We can sum these terms for |k − j| ≤ 1, j ≥ 2 as long as λ > λ∗(p) + ε.
Case (iii) is now reduced to finding a bound for ‖µjk‖Mp

.
Fix j, k such that |j − k| ≤ 1 and j, k 6= 1. Decompose the support of µjk in

the following manner. Let φ ∈ C∞0 (R) be a function such that φ ≡ 1 on [ 14 , 4] and

suppφ ⊂ [ 18 , 8]. Let ϕ̃(t) = ϕ(t)t and φ̃(t) = φ(t)tλ−1.

(2.69) (1− |ξd+1|)λ − (1− |ξ′|)λ

=

∫ 1

0

−λ[1− (t|ξd+1|+ (1− t)|ξ′|)]λ−1[|ξd+1| − |ξ′|]dt

= −λ|ξd+1|
∣∣∣∣1−

|ξ′|
|ξd+1|

∣∣∣∣
∫ 1

0

[1− (t|ξd+1|+ (1− t)|ξ′|)]λ−1dt(2.70)

(2.71) ϕ(2Mh(ξ))µjk(ξ)
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= ϕ(2Mh(ξ))ϕ(2j(1− |ξ′|))
· ϕ(2k(1− |ξd+1|))[(1− |ξd+1|)λ − (1− |ξ′|)λ]

= ϕ(2Mh(ξ))ϕ(2j(1−|ξ′|))ϕ(2k(1−|ξd+1|))(2.72)

·
∫ 1

0

(
φ(2j [1− (t|ξd+1|+ (1− t)|ξ′|)])(−λ)|ξd+1|

∣∣∣∣1−
|ξ′|
|ξd+1|

∣∣∣∣ [1− (t|ξd+1|+ (1− t)|ξ′|)]λ−1
)
dt

= (−λ)|ξd+1|2−M2−j(λ−1)ϕ̃
(
2M (h(ξ))

)
ϕ(2j(1−|ξ′|))(2.73)

· ϕ(2k(1−|ξd+1|))
∫ 1

0

φ̃(1− (t|ξd+1|+ (1− t)|ξ′|))dt

= (−λ)|ξd+1|2−M2−j(λ−1)ϕ̃
(
2M (h(ξ))

) ∫ 1

0

φj,t(ξ)dt(2.74)

φj,t(ξ) = ϕ(2j(1−|ξ′|))ϕ(2k(1−|ξd+1|))φ̃(1− (t|ξd+1|+ (1− t)|ξ′|))(2.75)

Since |k− j| ≤ 1, φj,t as defined in (2.75) clearly satisfies the conditions for Propo-
sitions 2.3 and 2.5, with all derivative bounds uniform for t ∈ [0, 1]. The multiplier
−λ|ξd+1|, when smoothly cut off outside of the cylinder, represents a nice bounded
multiplier operator so we can disregard it. We can now complete the calculation.

Prior to proceeding, however, we note that with the relationship to the cone
multiplier shown above, we can verify the following result of Luers [11], mentioned
earlier in the introduction.

Proposition 2.11. If d ≥ 3 and λ∗(p) ≥ 1, then Sλ is unbounded for all λ.

Set k = 3. Choose ϕ ∈ C∞0 (R) so that the closure of the support of ϕ is contained
in the support of ϕ (ϕ as chosen just prior to line (2.5)), and so that ϕ(t) ≡ 1 for

t ∈ [ 78 ,
5
4 ] (ϕ was chosen to be non-zero on the interval). Define a new operator C

by

(2.76) Ĉf(ξ) =

(
1− |ξ′|
|ξd+1|

)1

+

ϕ(23(1− |ξd+1|))f̂(ξ)

This operator clearly has equivalent boundedness properties as the cone multiplier
operator Cλ defined in the introduction, with λ = 1. We define another new
operator E as follows

ε(ξ) = ϕ(23(1− |ξ′|))ϕ(23(1− |ξd+1|))(2.77)

·
∫ 1

0

ϕ(23[1− (t|ξd+1|+ (1− t)|ξ′|)])(−λ)|ξd+1|

· [1− (t|ξd+1|+ (1− t)|ξ′|)]λ−1dt
Êf(ξ) = ϕ(23(1− |ξ′|))ϕ(23(1− |ξd+1|))(ε(ξ))−1(2.78)

Note that E has as its multiplier a nice Schwartz function, so E is trivially bounded
for all p. Comparing the definition of E with (2.72), one sees that the composed

operator F−1[µ3,3Êf ] differs from C only by a simple operator, which we will denote
I.
(2.79) Îf(ξ) = Ĉf(ξ)− µ3,3Êf(ξ)
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I has for its multiplier the same multiplier as C, except bounded away from the
light cone (which is the only place where C is bad). One sees that I is also trivially
a bounded operator for all p.

It is clear from the work done thus far that the boundedness of Sλ implies

the boundedness of the operator F−1[m3,3f̂ ] and hence also the boundedness of

F−1[µ3,3f̂ ]. Therefore it would also imply the boundedness of C. However, the
necessary condition for the cone multiplier operator (see line (2.4)) is well-known,
and C can only be bounded for λ∗(p) < 1. Thus we have the necessary condition
λ∗(p) < 1 for boundedness of Sλ, independent of λ.

2.3.4. Applying Proposition 2.3. To establish the bound (2.15), we relate our mul-
tiplier to spherical Bochner-Riesz means in Rd.

Lemma 2.12. Suppose η ∈ C∞0 (Rd) is supported in a δ-neighborhood of the set
{ξ′ ∈ Rd : |ξ′| = t}, 12 < t < 1. Suppose η satisfies the condition |∇nη| < C for
all 0 ≤ n ≤ N , where N is a large constant. Assume that for all η satisfying these
conditions, we have

(2.80) ‖η‖Mp0 ≤ C ′δ−λ∗(p0)+ε

where C ′ depends only upon C, p0, N and d (independent of t, η). Then

(2.81)
∥∥∥ϕ(2Mh(·))χ

(
2M(1+ε)

(
(·)d+1 −

ν

2M(1+ε)

))
ϕj

∥∥∥
Mp0

≤ C1Cϕ2
M(λ∗(p0)+ε)

Proof. We proceed by taking ϕ(2Mh(ξ)) and expanding it in a Taylor series in the
ξd+1 variable around ν

2M(1+ε) . Denote χν(ξd+1) = χ
(
2M(1+ε)

(
ξd+1 − ν

2M(1+ε)

))
.

(2.82) ϕ(2Mh(ξ))χν(ξd+1)ϕj(ξ) =

χν(ξd+1)ϕj(ξ)

∞∑

n=0

1

n!

∂n

∂ξnd+1

[
ϕ(2Mh(ξ))

]∣∣
ξd+1=

ν

2M(1+ε)

(
ξd+1 −

ν

2M(1+ε)

)n

Each derivative in the series loses 2M but we gain 2−M(1+ε) due to the support
of χν(ξd+1). Therefore we need only consider the first N terms, which all clearly
satisfy the η condition. The ϕj term can be absorbed into η, and the χ term
represents a nice bounded operator (its kernel is L1 independent of M). ¤

With this lemma, we now have (2.15) for p0 where the Bochner-Riesz conjecture
is known in Rd. Specifically, we have (2.15) for all p0 when d = 2 (see [3], [4]) and
for d ≥ 3 we have it for p0 > 2 + 4

d
due to Lee [10].

For the bound (2.16), we use a trivial bound in R2 ×R and R3 ×R, and the
bound of ÃLaba and Wolff [9] for d ≥ 4.

For d = 2 and d = 3, we note that the same simple integration by parts argument
used to show Lemma 2.7 also implies the following:

‖F−1[ΦM,Nϕj ]‖L1 . 1
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The L1 norm of the kernel bounds the operator norm (for all p) so we just add up
the pieces.

∥∥ϕ(2Mh(ξ))ϕj

∥∥
M∞ . ‖

∑

N∈SM

ΦM,Nϕj‖M∞

.
∑

N∈SM

1(2.83)

≈ 2(
M
2 )(d−1)

= 2Mλ∗(∞)(2.84)

For d ≥ 4, we use the following result of ÃLaba and Wolff [9]. Let ΓN (C) denote the
C-neighborhood of the cone segment {ξ : 2−CN ≤ |ξ| ≤ 2CN}. For fixed large N ,

we take an open covering of Sd−1 by caps Θ of diameter about N−
1
2 , and let ΞΘ be

functions whose Fourier transforms restricted to ΓN (C) form a partition of unity,

subordinate to {Θ} in the natural way. If the support of f̂ is contained in ΓN (1),
we define

‖f‖p,mic =

(∑

Θ

‖ΞΘ ∗ f‖pp

) 1
p

for 2 ≤ p <∞, and

‖f‖∞,mic = sup
Θ
‖ΞΘ ∗ f‖∞.

Theorem 2.13 (ÃLaba and Wolff). The following estimate holds in Rd×R if d ≥ 3,

p > pd =def min(2 + 8
d−3 , 2 +

32
3d−7 ) and f̂ is supported in ΓN (1):

(2.85) ∀ε∃Cε : ‖f‖p ≤ CεN
εNd( 12−

1
p
)− 1

2 ‖f‖p,mic

Our terms ΦM,N, after scaling by 2M , are supported on the cone Γ2M (1). In the
following pc > pd.

(2.86) ‖F−1[ϕ(2Mh(ξ))ϕj ] ∗ f‖pc

. 2Mε2Mλ∗(pc)

( ∑

N∈SM

‖F−1[ΦM,Nϕj ] ∗ f ]‖pcpc

) 1
pc

. 2M(λ∗(pc)+ε)‖f‖pc(2.87)

Above, (2.86) follows from (2.85). (2.87) can be obtained easily by checking the L2

and L∞ cases (using the bound from line (2.83)), then interpolating.
Line (2.87) and Lemma 2.12 provide the bounds one needs for Proposition 2.3.

We apply Proposition 2.3 in line (2.89). For p0 ≤ p ≤ pc, we have the following.

(2.88)
∑

|j−k|≤1

‖µjk‖Mp =
∑

|j−k|≤1

‖
∞∑

M=j−6

ϕ(2Mh(ξ))µjk‖Mp

.

∞∑

j=1




∞∑

M=j−6

2−M2−j(λ−1)2
(M−j)

(
1
p
− 1
pc

1
p0

− 1
pc

)
(1− 2

p0
)

2M(λ∗(p)+ε)


(2.89)

.

∞∑

j=1

(
2−j(λ−λ∗(p)−ε)

)
(2.90)
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For the sums to converge as indicated above, we require

(2.91) λ∗(p) +

(
1
p
− 1

pc
1
p0
− 1

pc

)
(1− 2

p0
) + ε < 1

For specific dimensions, our results are as follows:

• In R2 × R, p0 = 4 and pc = ∞. We have convergence for λ > λ∗(p),
4 ≤ p ≤ ∞.
• In R3 × R, p0 = 2 + 4

d
= 10

3 and pc = ∞. We have convergence for

λ > λ∗(p), 103 < p <∞.

• In R4 ×R, p0 = 2 + 4
d
= 3 and pc = 2 + 32

3d−7 = 42
5 . We have convergence

for λ > λ∗(p), 3 < p < 2 + 6
d−3 − 4

17 = 132
17 .

• In Rd ×R for d ≥ 5, p0 = 2 + 4
d
and pc = 2 + 8

d−3 . We have convergence

for λ > λ∗(p), 2 + 4
d
< p < 2 + 6

d−3 − 4
(d−3)(d+1) .

Note that λ∗(2 + 6
d−3 ) = 1.

2.4. Applying Proposition 2.5. Throughout this section, we will assume d ≥ 4
since Proposition 2.3 gave the best possible results for d = 2, 3 already. We have
(2.34) with q0 = 2 (so p0 = 4) and a = 0 (no loss!) due to Mockenhaupt, Seeger
and Sogge [14]. Unfortunately, we can only use this result for d = 4 and d = 5

since q0 = (p0

2 )
′ and we require that p0 ≥ 2(d+1)

d−1 . For d ≥ 6, we use a different

bound with q0 = d+1
2 and a = 1

d+1 , which is due to Skarabot [17]. This is proved
using Bourgain’s bush argument; an alternative variation of the bush argument is

presented in 3.3. Note that if p0 = 2(d+1)
d−1 , then q0 = (p0

2 )
′ = d+1

2 , so Skarabot’s
result can be used in Proposition 2.5 for any dimension.

With Skarabot’s result and line (2.87), we can apply Proposition 2.5 (we use it

in line (2.93) below). For 2(d+1)
d−1 ≤ p ≤ pc,

(2.92)
∑

|j−k|≤1

‖µjk‖Mp =
∑

|j−k|≤1

‖
∞∑

M=j−6

ϕ(2Mh(ξ))µjk‖Mp

.

∞∑

j=1




2j∑

M=j−6

2−M2−j(λ−1)2
(M−j)( a2 )

(
1
p
− 1
pc

1
p0

− 1
pc

)

2M(λ∗(p)+ε)(2.93)

+
∞∑

M=2j

2−M2−j(λ−1)2

(
(M2 −j)

(
1
2−

1
p0

)
+M( a4 )

)( 1
p
− 1
pc

1
p0

− 1
pc

)

2M(λ∗(p)+ε)




.

∞∑

j=1

(
2−j(λ−λ∗(p)−ε)

)
(2.94)

provided we have the following two inequalities.

(a
2

)( 1
p
− 1

pc
1
p0
− 1

pc

)
+ λ∗(p) + ε < 1(2.95)

(
1

2

(
1

2
− 1

p0

)
+
a

4

)( 1
p
− 1

pc
1
p0
− 1

pc

)
+ λ∗(p) < 1(2.96)
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Note that the second inequality implies the first for a
4 <

1
2

(
1
2 − 1

p0

)
. This is true

both for a = 1
d+1 , p0 = 2(d+1)

d−1 and for a = 0, p0 = 4. It is interesting to note

that (2.96) comes from the case where M is much larger than j. When M À j, we
are especially close to the light cone where the multiplier mλ is not smooth. This
observation captures the fact that for λ∗(p) near 1, the quality of our result depends
directly on our knowledge of the cone multiplier (and truncated cone multipliers).

After working out the algebra, Proposition 2.5 provides the following results.
It turns out that even though we have a maximal function bound with a = 0 for
d = 4, 5, it is still more efficient to use the a = 1

d+1 bound. This is due to the fact

that 2(d+1)
d−1 < 4. In this case, the gain from interpolating with a smaller p0 exceeds

the gain from having a better value for a.

• In R4 ×R, pc = 2+ 32
3d−7 = 42

5 . With p0 =
2(d+1)
d−1 and a = 1

d+1 , we obtain

convergence for λ > λ∗(p), 2(d+1)
d−1 < p < 2 + 6

d−3 − 6
61 = 482

61 . With a = 0

and p0 = 4, we obtain convergence for 4 < p < 2 + 6
d−3 − 2

17 = 134
17 .

• In R5 ×R, pc = 2 + 8
d−3 = 6. With p0 = 2(d+1)

d−1 and a = 1
d+1 , we obtain

convergence for λ > λ∗(p), 2(d+1)
d−1 < p < 2 + 6

d−3 − 1
7 = 34

7 . With a = 0

and p0 = 4, we obtain convergence for 4 < p < 2 + 6
d−3 − 1

3 = 14
3 .

• In Rd × R for d ≥ 6, p0 = 2(d+1)
d−1 , a = 1

d+1 and pc = 2 + 8
d−3 . We have

convergence for λ > λ∗(p), 2(d+1)
d−1 < p < 8d2+2d−6

4d2−11d−3 = 2+ 6
d−3 − 6

(4d+1)(d−3) .

Note that for d large, we were off of the best value of 2 + 6
d−3 by ∼ 4

d2 using

Proposition 2.3. Now we lose only ∼ 3
2d2 , which is a significant improvement.

Together, the two sets of ranges for p from Propositions 2.3 and 2.5 provide the
ranges stated in 1.

2.5. Case (iv): (k, j) ∈ {(1, 1), (1, 2), (2, 1)}, the Center.

Lemma 2.14.

(2.97) ‖F−1[m11 +m12 +m21] ∗ f‖Lp . ‖f‖Lp

for all f ∈ Lp(Rd ×R), 1 < p <∞ and λ > 0.

Proof. In this region we use the following theorem of Seeger [15] to extend our result
to the origin. The theorem applies with ϕ defined as in the rest of this paper.

Theorem 2.15 (Seeger). Suppose that m is a bounded function which satisfies for
some p, 1 < p <∞, ε > 0

sup
t>0
‖ϕ(| · |)m(t·)‖Mp ≤ A(2.98)

sup
t>0

∫

|x|≥w

|F−1[ϕ(| · |)m(t·)](x)|dx ≤ B(1 + w)−ε(2.99)

Then

‖m‖Mp . A[log(2 +
B

A
)]

1
p
− 1

2 .

We begin by decompose the multiplier in this region similar to the way we did
in (2.3). Note we work with µ11 and the other two multipliers are similar.
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µ11(ξ) =

∞∑

M=0

ϕ(2Mh(ξ))[(1− |ξd+1|)λ − (1− |ξ′|)λ]ϕ1(|ξ′|)ϕ1(|ξd+1|)

Denote the terms in the sum µM (ξ). By analyzing the multiplier ϕ(| · |)µM (t·),
we can obtain boundedness results for µ11. First we note that due to the support
of µM , ϕ(| · |)µM (t·) is only non-zero if t < 2. By analyzing derivatives of the
multiplier and using the fact that t is bounded, we see that

sup
t>0
‖ϕ(| · |)µM (t·)‖L2

α
≤ Cα2

−M independent of t

We use this bound for the condition (2.98) in Theorem 2.15.
We obtain a bound of the form on (2.99) by doing integration by parts d + 2

times. Note that in the integration by parts we lose at most 2M on each derivative
since that is the loss in the multiplier’s worst direction. We begin by defining the
set Ωω

j .

(2.100) Ωω
j = {ξ ∈ Rd ×R, |ξ| > ω and |ξj | = max

k=1,...,d+1
|ξk|}

sup
t>0

∫

|x|>ω

|F−1[ϕ(| · |)µM (t·)](x)|dx . sup
t>0

∫

|x|>ω

∣∣∣∣
∫
eix·ξϕ(|ξ|)µM (tξ)dξ

∣∣∣∣ dx

. sup
t>0

d+1∑

j=1

∫

Ωωj

∣∣∣∣∣

∫
eix·ξ

|xj |d+2
∂d+1

∂ξd+1j

(ϕ(| · |)µM (t·))(ξ)dξ
∣∣∣∣∣ dx(2.101)

. sup
t>0

d+1∑

j=1

∫

Ωωj

∫
2M(d+2)

|xj |d+2
χsupp(ϕ(|·|)µM (t·))(ξ)dξdx(2.102)

. sup
t>0

d+1∑

j=1

∫

Ωωj

2M(d+1)

|xj |d+2
dx(2.103)

. 2(d+1)M (1 + ω)−ε independent of t(2.104)

We then obtain a good bound on each µM and can sum in M .

‖µM‖Mp . 2−M

[
log

(
2 +

2(d+1)M

2−M

)]| 1
p
− 1

2 |

. M | 1
p
− 1

2 |2−M

⇒ ‖µ11‖Mp .

∞∑

M=0

M | 1
p
− 1

2 |2−M

< ∞
This bound on ‖µ11‖Mp applies for 1 < p <∞ and for all λ > 0. ¤

Combining the results of the four cases completes the proofs for Theorems 1.1,
1.2, 1.3 and 1.4. It remains only to verify the lemmas which we have stated.

3. Proofs of the Lemmas

Here we present proofs for lemma 2.6, lemmas 2.7 and 2.10 and the Nikodym
maximal function bound used in 2.4.
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3.1. Proof of Lemma 2.6. Recall that χN,ν = χ̃QN
(ξ′)χ̃ν(ξd+1). For generality,

denote the radius of the cube where χN,ν is supported by δ and let R = 1
δ
(δ = 2−

M
2

in Lemma 2.6, and δ = 2−j in Lemma 2.9). Q was defined to be the cubes in the
sum which intersected the support of ϕ(2Mh(·))ϕj . The union of these cubes will
form a δ-neighborhood of this support, which is in the shape of a truncated cone.
Also note that for a fixed ν (so |ξd+1| ∼ ν

2
M
ch

), the union of the cubes corresponding

to ν will form a “ring”, a δ-neighborhood of a lower dimensional sphere Sd−1 with
radius between 1

2 and 1 depending linearly on ν.
We follow an argument which is attributed to Stein and can be found in [7].

Proof. To show (2.38), it is sufficient to show the following dual inequality for

p ≤ 2(d+1)
d+3 .

(3.1) ‖
(∑∣∣F−1[χN,ν ] ∗ f

∣∣2
) 1

2 ‖p . (card(V))( 12− 1
p
)Rλ∗(p′)+ε‖f‖p

Note that we have a bound on the kernels,

|F−1[χN,ν ](x− y)| ≤ CN

R−(d+1)
(
1 + |x−y|

R

)N

We may assume that F−1[χN,ν ] ∗ f is supported in a cube Q̃ = Q̃′ × Q̃d+1 in
Rd ×R of radius R1+ε. Outside of the cube we can use the above bound to gain
an arbitrary power of R.

In the following, let fν = F−1[χ̃ν(ξd+1)f̂ ]. Let Fξ′ =
∫
Rd e

ix′·ξ′f(x)dx′ denote
the partial Fourier transform in the first d variables.

∥∥∥∥
(∑∣∣F−1[χN,ν ] ∗ f

∣∣2
) 1

2

∥∥∥∥
p

p

=

∫

Q̃

(∑

N

∑

ν∈V

|F−1[χN,ν ] ∗ f(x)|2
) p

2

dx

. |Q̃|1− p
2

(∫

Q̃

∑

N

∑

ν∈V

|F−1[χN,ν ] ∗ f(x)|2dx
) p

2

(3.2)

= |Q̃|1− p
2

(∑

ν∈V

∫

Q̃d+1

∫

Rd

∑

N

|χ̃QN
(ξ′)Fξ′ [fν ](ξ

′, xd+1)|2dξ′dxd+1
) p

2

(3.3)

. |Q̃|1− p
2

(∑

ν∈V

R−1
∫

Q̃d+1

(∫

Rd

|fν |pdx′
) 2

p

dxd+1

) p
2

(3.4)

= Rpλ∗(p)+εRp( 1
p
− 1

2 )

(∫

Q̃d+1

∑

ν∈V

(∫

Rd

|fν |pdx′
) 2

p

dxd+1

) p
2

(3.5)

In line (3.2) we are using Hölder’s inequality. (3.3) is an application of Plancherel
in the first d variables. Then in (3.4) we apply the Tomas-Stein restriction theorem
for Rd [18]. The R−1 factor comes from the thickness of the annulus in Rd. Since
λ∗(p′) = λ∗(p), it remains to show that

(3.6)

(∫

Q̃d+1

∑

ν∈V

(∫

Rd

|fν |pdx′
) 2

p

dxd+1

) 1
2

.

(
card(V)

R

)( 1
p
− 1

2 )

Rε‖f‖Lp(Rd×R)
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We show this estimate for p = 1 and p = 2 then interpolate. For p = 2, the estimate
is trivial by Plancherel’s theorem. For p = 1, first make the following observations
of χν and fν .

χν(ξd+1) = χ
(
R
(
ξd+1 −

ν

R

))
(3.7)

|F−1[χν ](xd+1)| =

∣∣∣∣
1

R
F−1[χ](xd+1

R
)

∣∣∣∣(3.8)

|fν(x)| =

∣∣∣∣
∫

R

F−1[χν ](xd+1 − yd+1)f(x′, yd+1)dyd+1
∣∣∣∣(3.9)

.

(∫

R

∣∣∣∣
1

R
F−1[χ](xd+1 − yd+1

R
)

∣∣∣∣
p′

dyd+1

) 1
p′

(3.10)

·
(∫

R

|f(x′, yd+1)|pdyd+1
) 1

p

=
1

R
1
p

‖F−1[χ]‖Lp(R)

(∫

R

|f(x′, yd+1)|pdyd+1
) 1

p

(3.11)

(∫

Q̃d+1

∑

ν∈V

(∫

Rd

|fν |dx′
)2

dxd+1

) 1
2

.

(∫

Q̃d+1

∑

ν∈V

(
1

R

∫

Rd

∫

R

|f(x′, yd+1)|dyd+1dx′
)2

dxd+1

) 1
2

(3.12)

=
1

R

(∫

Q̃d+1

∑

ν∈V

‖f‖2L1(Rd×R)dxd+1

) 1
2

(3.13)

.
1

R

(
R1+ε(card(V))‖f‖2L1(Rd×R)

) 1
2

(3.14)

.
1

R
1
2

Rε(card(V)) 1
2 ‖f‖L1(Rd×R)(3.15)

The estimate (3.6) follows by interpolation. This completes the proof for functions

supported in Q̃. A standard argument, using the gain in (3.1), extends this proof
to the general situation. ¤

3.2. Proofs of Lemmas 2.7 and 2.10.
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Proof. We begin with the proof of Lemma 2.7. We use integration by parts to
bound the kernel F−1(ΦM,N,νϕj) in d+ 2 regions, Ωl, l = 0 . . . d+ 1.

Ω0 =

{
x : max

{∣∣∣∣
u1 · x
2
M
2

∣∣∣∣ , . . . ,
∣∣∣∣
ud−1 · x
2
M
2

∣∣∣∣ ,
∣∣∣ud · x
2M

∣∣∣ ,
∣∣∣∣
ud+1 · x
2
M
2

∣∣∣∣
}
< 2

}

Ωl =

{
x :

∣∣∣∣
ul · x
2
M
2

∣∣∣∣ >
1

2
max

{{∣∣∣∣
ui · x
2
M
2

∣∣∣∣
}

i=1...d−1
i6=l

,
∣∣∣ud · x
2M

∣∣∣ ,
∣∣∣∣
ud+1 · x
2
M
2

∣∣∣∣

}
,

x /∈ 1

2
Ω0

}
for 1 ≤ l ≤ d− 1

Ωd =

{
x :
∣∣∣ud · x
2M

∣∣∣ > 1

2
max

{∣∣∣∣
u1 · x
2
M
2

∣∣∣∣ , . . . ,
∣∣∣∣
ud−1 · x
2
M
2

∣∣∣∣ ,
∣∣∣∣
ud+1 · x
2
M
2

∣∣∣∣
}
, x /∈ 1

2
Ω0

}

Ωd+1 =

{
x :

∣∣∣∣
ud+1 · x
2
M
2

∣∣∣∣ >
1

2
max

{∣∣∣∣
u1 · x
2
M
2

∣∣∣∣ , . . . ,
∣∣∣∣
ud−1 · x
2
M
2

∣∣∣∣ ,
∣∣∣ud · x
2M

∣∣∣
}
, x /∈ 1

2
Ω0

}

Now we apply integration by parts to make our d+2 estimates. In the first region,
Ω0, we just use the size estimate of supp(ΦM,N,νϕj).

∣∣∣∣
∫
eix·ξΦM,N,ν(ξ)ϕj(ξ)dξ

∣∣∣∣ .

∫

supp(ΦM,N,ν)

1 dξ

. 2−M2−
M
2 (d)

On Ωl, 1 ≤ l ≤ d+ 1, we integrate by parts d+ 2 times in the dominant direction.
For 1 ≤ l ≤ d − 1, as expected, the derivatives of ΦM,N,ν in the ul-direction each

cause a loss of 2
M
2 , while derivatives of ϕj always lose 2j .

∣∣∣∣
∫
eix·ξΦM,N,ν(ξ)ϕj(ξ)dξ

∣∣∣∣ ≤
∫

1

(ul · x)d+2
(ul · ∇)d+2[ΦM,N,ν(ξ)ϕj(ξ)]dξ

.
1

(ul · x)d+2
∫

supp(ΦM,N,ν)

2
M
2 (d+2)dξ

.
1

(2−
M
2 ul · x)d+2

2−
M
2 d2−M

Similar bounds follow for the x in Ωd and Ωd+1.
∣∣∣∣
∫
eix·ξΦM,N,ν(ξ)ϕj(ξ)dξ

∣∣∣∣ .
1

(2−Mud · x)d+2
2−

M
2 d2−M

∣∣∣∣
∫
eix·ξΦM,N,ν(ξ)ϕj(ξ)dξ

∣∣∣∣ .
1

(2−
M
2 ud+1 · x)d+2

2−
M
2 d2−M

The lemma follows directly from these estimates.
The proof of Lemma 2.10 is identical. We use the same decompositions and

calculations, excepting a few small changes. Derivatives in the directions which

lost 2
M
ch before now lose 2j , and the size of the support of Φ̃M,Nϕj is 2−jd2−M

instead of 2−
M
2 d2−M . We also would have to redefine the Ωl’s by replacing ul·x

2
M
2

terms with ul·x
2j . ¤

3.3. Estimate for the Nikodym Maximal Function for Light Rays. Here
we present a variation of Bourgain’s bush argument [1]. Skarabot showed this same
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bound [17] by using the bush argument to show a L
d+1
2 → Ld+1, then deducing the

Lp → Lp bound. We directly derive the L
d+1
2 → L

d+1
2 bound.

Proof. Since this maximal function uses averages over tubes which are 1 long and
δ in diameter, it only acts locally. We are able to assume that the input function
f and the output Mδf are supported on a cube of sidelength 4. We are also able
to prove a result in just the first d variables, as we will be able to integrate out the
final variable. We verify the following proposition.

Proposition 3.1. Let 2 ≤ p ≤ d. Let E be a set contained in the unit cube. Then

(3.16) |{x′ :MδχE(x
′, xd+1) > λ}| .

(
δ1−

d
p
−εδ−α|E| 1p
λ

)p

where

α =

{
1
2p if p ≤ d+1

2

1− d
2p if p ≥ d+1

2

By using interpolation on this restricted weak-type bound, we obtain the bound
in (2.34) with a = 1

d+1 and q0 =
d+1
2 .

Let Ωλ = {x′ :MδχE(x
′, xd+1) > λ}. We begin by taking a maximal δ-separated

subset u1, . . . , uN of Ωλ. Note that |Ωλ| ≤ Nδ−d. For each uγ , we choose a tube
Rγ , with dimensions δ × · · · × δ × 1 and pointing along a light ray, which satisfies

1

|Rγ |

∫

Rγ

χE =
|E ∩Rγ |
|Rγ |

> λ

By using our Nδ−d bound and isolating |E| in (3.16), is suffices to show

(3.17) |E| & Nδ2d−p+αp+ελp

We now separate into two cases: when there is no point (x′, xd+1) contained in
more than µ = λ1−pδp−d−αp tubes Rγ , and when there is such a point. Note that
the result is trivial if λ > 1, so we will be assume λ ≤ 1.

In the first case, we have the following estimate.

|E| ≥
∑

γ

∫
E
χRγ

µ
(3.18)

≈
∑

γ

|Rγ ∩ E|
|Rγ |

· δ
d

µ
(3.19)

&
Nλδd

µ
(3.20)

= Nδ2d−p+αpλp
(
λ1−pδp−d−αp

µ

)

= Nδ2d−p+αpλp

Note that for λ < δ, we can verify (3.16) using µ = Cδ−(d−1). Due to the fact that
the tubes must be in the directions of light rays, Cδ−(d−1) is the most tubes which
could possibly intersect at a point (with C depending only on d). So from now on
we assume that δ ≤ λ ≤ 1.
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For the second case, let x0 be a point contained in at least µ tubes. We consider

the tubes R̃γ which contain x0. Let B(x0,
λ
C0

) is the ball around x0 of radius λ
C0

.
Then for C0 sufficiently large

|(R̃γ ∩ E) \B(x0,
λ

C0
)| & λδd.

Observe that (R̃γ ∩E)\B(x0,
λ
C0

) and (R̃γ′ ∩E)\B(x0,
λ
C0

) are disjoint if the angle

between R̃γ and R̃γ′ is & δ
λ
. There at most λ1−d tubes containing x0 which are

within an angle δ
λ
of R̃γ , so we have the following.

|E| &
µ

λ1−d
(λδd)(3.21)

= µλdδd(3.22)

= Nδ2d−p+αpλp
(

µ

Nλp−dδd− p+ αp

)
(3.23)

µ

Nλp−dδd− p+ αp
=

1

N
λ−2p+d+1δ2p−2d−2pα(3.24)

& λ−2p+d+1δ2p−d−2pα(3.25)

In (3.25) we used the fact that N . δ−d. We are done once we show

λ−2p+d+1δ2p−d−2pα & 1.

For p ≤ d+1
2 , α = 1

2p .

λ−2p+d+1δ2p−d−2pα ≥ δ−2p+d+1δ2p−d−1

= 1

For p ≥ d+1
2 , α = 1− d

2p .

λ−2p+d+1δ2p−d−2pα ≥ 1−2p+d+1δ2p−d−(2p−d)

= 1

¤
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