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Abstract. The generalized Bochner-Riesz operator SR,λ may be defined as

SR,λf(x) = F−1

[(
1− ρ

R

)λ

+
f̂

]
(x)

where ρ is an appropriate distance function and F−1 is the inverse Fourier
transform. The sharp bound ‖SR,λf‖L4(R2×R2) ≤ C‖f‖L4(R2×R2) is shown

for the distance function ρ(ξ′, ξ”) = max{|ξ′|, |ξ′′|}. This is a rough distance
function corresponding to the R4 cylinder analog {(x1, x2, x3, x4) ∈ R4, x2

1+

x2
2 ≤ 1, x2

3 + x2
4 ≤ 1}.

Introduction

Bochner-Riesz means were conceived as a method for addressing the convergence
of the inverse Fourier transform. We know the inverse Fourier transform (denoted
F−1) will allow us to recover f from the Fourier transform of f (denoted f̂) if f is in
Schwartz space (smooth, rapidly decaying at ∞, denoted S) or if f ∈ L2. However,
for more general f ∈ Lp, f̂ will typically not be integrable and the inverse Fourier
transform will not represent a convergent Lebesgue integral. Bochner-Riesz means
allow one to check the convergence of the integral as a limit.

We define distance functions to be functions ρ which are continuous on Rd and
satisfy

ρ(tx) = tρ(x), t > 0,

ρ(x) > 0 if x 6= 0.

We define the generalized Bochner-Riesz operator SR,λ as follows:

(0.1) SR,λf(x) = F−1[
(
1− ρ

R

)λ

+
f̂ ](x).

Here (g(ξ))+ = max{g(ξ), 0} is the positive part. Note that as R →∞, SR,λf → f
for f ∈ S. Also note that SR,λf → f for f ∈ L2 by Plancherel’s theorem. On
general principals, the question of convergence on other Lp spaces is equivalent to
the question of boundedness of the operators SR,λ. By scaling, we may also assume
that R = 1. From now on we will focus on the boundedness of Sλ = S1,λ on Lp.

Standard Bochner-Riesz means, where ρ(ξ) = |ξ|, have been studied extensively.
This case will be referred to as spherical means, as the multiplier is supported
on a spherical ball. In 1971, Fefferman [2] showed that for spherical means to be
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bounded on Lp, it is necessary to have λ > λ∗(p) = max{d
∣∣∣1
2 − 1

p

∣∣∣ − 1
2 , 0}. The

Bochner-Riesz conjecture states that this is both necessary and sufficient.
In 1972, Carleson and Sjölin verified the conjecture in R2 [1]. In 1973, Fefferman

showed a connection between the Restriction Conjecture for the sphere and the
Bochner-Riesz conjecture [3]. Recent progress on the Restriction Conjecture has
used a bilinear approach (as in [8]) and recently Lee adapted Fefferman’s argument
to apply the bilinear results directly to spherical means [4]. This approach applied
to the recent bilinear result of Tao [7] proves the Bochner-Riesz conjecture for
p > 2 + 4

d for d ≥ 3, the best current range of p.
To gain some insight into general ρ we consider ρ(ξ) = max{|ξ′|, |ξ′′|}, a distance

function related to a cylinder. Here ξ = (ξ′, ξ′′) ∈ Rd′×Rd′′ and we assume d′ ≥ d′′.
For this ρ, we denote the multiplier by mλ:

(0.2) mλ(ξ) = (1−max{|ξ′|, |ξ′′|})λ
+.

The support of mλ is a cylinder analog where d′′ is allowed to be bigger than 1. For
ξ near |ξ′| = 1, mλ = (1− |ξ′|)λ

+ which is the multiplier for spherical means in Rd′ .
A similar relationship holds between ξ and ξ′′ for ξ near |ξ′′| = 1. This way the same
critical index λ∗(p) will apply for the cylinder multiplier and spherical means in Rd1 ,
since we assume d′ ≥ d′′ and therefore will provide the more restrictive condition.
Given these observations, one might expect that this cylindrical operator would be
bounded for the same range of λ as spherical means in Rd′ . However, this is not
the case.

This problem was first studied by Luers [5] in 1988. Along with some partial
positive results, he showed that in Rd × R when d ≥ 4 and λ∗(p) ≥ 1, then Sλ

is unbounded for all λ. This is curious, since with spherical means there is always
some large λ for which the operator is bounded.

In 2007 the author made a more thorough investigation of the Rd ×R case [9].
It was shown that since the multiplier is not smooth on the light cone |ξ′| = |ξ′′|,
boundedness would also depend on the cone multiplier. The nature of the non-
smoothness requires that λ∗(p), which is also the critical index the cone multiplier
in question, must be less than 1, rather than simply less than λ.

This paper addresses a case not treated in [9], the case where ξ ∈ R2 × R2.
The arguments in [9] made ample use of the simplifying assumption that d′′ = 1,
and having d′′ > 1 greatly complicates matters. Large portions of the argument
are easily adapted for use here, however in the key region where |ξ′| ≈ |ξ′′| more
significant modifications become necessary.

1. Results

Theorem 1.1. The operator Sλ is bounded from L4(R2×R2) → L4(R2×R2) for
λ > 0.

Our operator has quantitatively similarities to spherical means in R2, so they
will share the critical index of λ > 0 when p = 4. However, our operator also shares
characteristics with the cone-like multiplier supported near |ξ′| = |ξ′′|. Sharp results
are not available for this multiplier, so no sharp results for p > 4 were obtained here.
However the cone region can be sliced into numerous neighborhoods of S1 × S1,
where S1 represents a sphere in R2 (that is, a circle). Since the critical index
for spherical means in R2 is λ > 0 when p = 4, adding these slices results in no
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significant loss. To extend the result to p > 4, some kind of sharp result for the
|ξ′| = |ξ′′| multiplier will be required.

2. Proof

We begin by defining a new operator, Sδ, related to spherical means.

Ŝδf(ξ) = ϕ(δ−1(1− |ξ|))f̂(ξ).(2.1)

By using a dyadic decomposition, it is easy to see that the study of spherical means
can by reduced to the study of this operator. ϕ is in the class Φ, which consists of
all function in C∞0 with the following properties:

support of ϕ ⊂ [0, 2],∣∣∣∣
∂|α|

∂ξα
ϕ

∣∣∣∣ . C for all |α| ≤ d + 2,

where α = (α1, . . . , αd+1) is a standard multi-index and C is a fixed constant. κ is
a C∞0 function supported in (− 1

2 , 1
2 ). δ is assumed to be a small positive number.

As stated in the introduction, the sharp bounds for Sδ were verified by Carleson
and Sjölin.

Theorem 2.1 (Carleson, Sjölin).

‖Sδg‖L4(R2) . δ−λ‖g‖L4(R2),

for all λ > 0.

Note that throughout the exposition, we will be using the symbol . to denote
that one expression is less than the other up to a constant which depends only on
fixed values such as dimension and constants ε which are fixed at the beginning of
proofs.

We now make a preliminary decomposition, then group the pieces into four cases
which capture the nature of the multiplier mλ = (1 − max{|ξ′|, |ξ′′|})λ

+. Choose
ϕ ∈ C∞0 (R) so that the support of ϕ is contained in [ 12 , 2], ϕ 6= 0 on [ 34 , 3

2 ] and∑∞
j=2 ϕ(2jt) ≡ 1 for t ∈ (0, 1

4 ). Choose ϕ1 so that ϕ1(t) +
∑∞

j=2 ϕ(2j(1 − t)) ≡ 1
for t ∈ [0, 1).

Let

mjk(ξ) = ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξ′′|))mλ(ξ) for j, k ≥ 2,(2.2)

m1k(ξ) = ϕ1(|ξ′|)ϕ(2k(1− |ξ′′|))mλ(ξ) for k ≥ 2,

mj1(ξ) = ϕ(2j(1− |ξ′|))ϕ1(|ξ′′|)mλ(ξ) for j ≥ 2,

m11(ξ) = ϕ1(|ξ′|)ϕ1(|ξ′′|)mλ(ξ).

Then, using the Triangle inequality,

(2.3) ‖mλ‖Mp ≤
∞∑

k,j=1

‖mjk(ξ)‖Mp ,

where ‖mλ‖Mp denotes the operator norm of f → F−1[mλf̂ ].
We divide the sum into three parts and deal with each of them separately. The

three parts are
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Case (i) |k − j| ≥ 2: When |k− j| ≥ 2 the support of mjk is near the “sides”
of the cylinder, where |ξ′| = 1 or |ξ′′| = 1. In this region mλ = (1 − |ξ′|)λ

(or mλ = (1−|ξ′′|)λ), so one expects the multiplier to behave like spherical
means in R2.

Case (ii) |k − j| ≤ 1, k, j 6= 1: This region contains the set where |ξ′| = |ξd+1|
(except near the origin). This is the most interesting case, where we explore
the non-smooth portion of mλ.

Case (iii) |k − j| ≤ 1, k = 1 or j = 1: We simply use scaling to extend our
results from the first two cases to the center of the cylinder.

2.1. Case (i) |k − j| ≥ 2, near |ξ′| = 1 or |ξ′′| = 1.

Lemma 2.2. Let λ > 0. The following sums converge:
∑∞

k=1

∑∞
j=k+2 ‖mjk‖M4 ,(2.4)

∑∞
j=1

∑∞
k=j+2 ‖mjk‖M4 .(2.5)

These sums represent all multiplier pieces where |k − j| ≥ 2.

Proof. Fix a small ε > 0.
Consider the first sum. When j ≥ k + 2 ≥ 4, we have ρ(ξ) = |ξ′|, so

mjk(ξ) = ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξ′′|))(1− |ξ′|)λ.

Note that

‖mjk‖M4 = ‖S′2−j‖L4(R2)→L4(R2)‖S̃2−k‖L4(R2)→L4(R2),

where S′2−j f = F−1[ϕ(2j(1− |ξ′|))(1− |ξ′|)λ] ∗ f,

and S̃2−kf = F−1[ϕ(2k(1− |ξ′′|))] ∗ f.

We note that for S′2−j we can use Theorem 2.1 with δ = 2−j as follows. Define
ϕ̃(t) = tλϕ(t). Then

(2.6) S′2−j f = 2−jλF−1[ϕ̃(2j(1− |ξ′|))] ∗ f.

Since Theorem 2.1 requires only that ϕ a C∞0 function, we obtain the following
resulting bound. Here we are also using the fact that since the operator S′2−j acts
only on the first d variables, leaving the ξ′′ variables independent, we need only
investigate the corresponding operator on R2, for which we use the same name.

(2.7) ‖S′2−j‖L4(R2)→L4(R2) . 2−jλ2jε.

The operator S̃2−k only acts on the ξ′′ variables, so we consider the corresponding
operator on R2. Here Theorem 2.1 also applies, this time without changing ϕ. We
obtain the following bound:

(2.8) ‖S̃2−k‖L4(R2)→L4(R2) . 2kε.

The same bounds for j and k such that j ≥ k +2 = 3 can be derived in a similar
way. Now we can sum over the range j ≥ k + 2.

(2.9)
∞∑

k=1

∞∑

j=k+2

‖mjk‖M4 .
∞∑

k=1

∞∑

j=k+2

2j(−λ+ε)2kε.

This sum converges if λ > 2ε.
The second sum where k ≥ j + 2 converges for by a similar argument. ¤
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2.2. Case (ii) |k − j| ≤ 1, k, j 6= 1, near |ξ′| = |ξ′′|. In this region we investigate
the non-smooth portion of the multiplier. A number of steps are taken to prepare
the multiplier, first to highlight the relationship to the cone then to decompose the
multiplier into appropriate pieces.

2.2.1. Preparation of the Multiplier. We begin by subtracting a smooth multiplier
in order to make our multiplier zero on the set where |ξ′| = |ξ′′|. This will simplify
our analysis. We then decompose the multiplier dyadically with respect to distance
from |ξ′| = |ξ′′|. The multiplier will have approximately uniform magnitude on the
support of each of these dyadic pieces. A further decomposition essentially leaves
us with pieces which are supported on a neighborhood of S1×S1. We will then be
able to apply the Bochner-Riesz results from R2 to these final pieces.

Fix j, k such that |j − k| ≤ 1 and j, k 6= 1. For the multiplier piece mjk, we set
it equal to zero along |ξ′| = |ξ′′| as follows. Let

µjk(ξ) = mjk(ξ)− ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξ′′|))(1− |ξ′|)λ

=





ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξ′′|))[(1− |ξ′′|)λ−(1− |ξ′|)λ]
if |ξ′′| ≥ |ξ′|,

0 if |ξ′′| ≤ |ξ′|.
(2.10)

Referring back to the proof of Lemma 2.2, we see that the multiplier we are sub-
tracting,

ϕ(2j(1− |ξ′|))ϕ(2k(1− |ξ′′|))(1− |ξ′|)λ,

is nearly the same as the multipliers considered in Case (i). The only difference is
that |k − j| ≤ 1, whereas in Case (i) j ≥ k + 2. The same proof applies here, so

‖ϕ(2j(1− |(·)′|))ϕ(2k(1− |(·)′′|))(1− |(·)′|)λ‖Mp . 2j(−λ+λ∗(p)+2ε).

We can sum these terms for p = 4 and {j, k, |k− j| ≤ 1, j ≥ 2} as long as λ > 2ε.
Case (ii) is now reduced to finding a bound for ‖µjk‖Mp .
Decompose the support of µjk in the following manner. Let φ ∈ C∞0 (R) be a

function such that φ ≡ 1 on [ 14 , 4] and suppφ ⊂ [ 18 , 8]. Let ϕ̃(t) = ϕ(t)t, φ̃(t) =
φ(t)tλ−1 and h(ξ) = 1− |ξ′|

|ξ′′| . Then

(1− |ξ′′|)λ − (1− |ξ′|)λ =
∫ 1

0

−λ[1− (t|ξ′′|+ (1− t)|ξ′|)]λ−1[|ξ′′| − |ξ′|]dt

= −λ|ξ′′|
∣∣∣∣1−

|ξ′|
|ξ′′|

∣∣∣∣
∫ 1

0

[1− (t|ξ′′|+ (1− t)|ξ′|)]λ−1dt,(2.11)
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ϕ(2Mh(ξ))µjk(ξ) = ϕ(2Mh(ξ))ϕ(2j(1− |ξ′|))
· ϕ(2k(1− |ξ′′|))[(1− |ξ′′|)λ − (1− |ξ′|)λ]

= ϕ(2Mh(ξ))ϕ(2j(1−|ξ′|))ϕ(2k(1−|ξ′′|))(2.12)

·
∫ 1

0

(φ(2j [1− (t|ξ′′|+ (1− t)|ξ′|)])(−λ)|ξ′′|

·
∣∣∣∣1−

|ξ′|
|ξ′′|

∣∣∣∣ [1− (t|ξ′′|+ (1− t)|ξ′|)]λ−1)dt

= (−λ)|ξ′′|2−M2−j(λ−1)ϕ̃
(
2Mh(ξ)

)
ϕ(2j(1−|ξ′|))(2.13)

· ϕ(2k(1−|ξ′′|))
∫ 1

0

φ̃(2j [1− (t|ξ′′|+ (1− t)|ξ′|)])dt

= (−λ)|ξ′′|2−M2−j(λ−1)ϕ̃
(
2Mh(ξ)

)
ϕj(ξ′)ϕk(ξ′′)

∫ 1

0

φj,t(ξ)dt,(2.14)

where

ϕj(ξ′) = ϕ(2j(1−|ξ′|)),(2.15)

ϕk(ξ′′) = ϕ(2k(1−|ξ′′|)),(2.16)

φj,t(ξ) = φ̃(1− (t|ξ′′|+ (1− t)|ξ′|)).(2.17)

Since |k − j| ≤ 1, φj,t satisfies the following properties:

supp(φj,t) ⊂ {ξ ∈ R2 ×R2,
1

100
< 2j(1− |ξ′|) < 100(2.18)

and
1

100
< 2j(1− |ξ′′|) < 100},

|∂
|α|

∂ξα
φj,t(ξ)| ≤ C2|α|j for all |α| ≤ 5.(2.19)

Note that the bounds on the derivatives are uniform for t ∈ [0, 1], so both the
above properties apply to

∫ 1

0
φj,t(ξ)dt. The multiplier −λ|ξ′′|, when smoothly cut

off outside of the cylinder, represents a nice bounded multiplier operator so we can
absorb it into a new term φj :

(2.20) φj(ξ) = (−λ)|ξ′′|
∫ 1

0

φj,t(ξ)dt.

Since |j − k| ≤ 1, it will suffice to consider j = k. The |j − k| = 1 cases will follow
from the same proof. We have now reduced the multiplier to the simplified form

(2.21) ϕ(2Mh(ξ))µjk(ξ) = 2−M2−j(λ−1)ϕ̃
(
2Mh(ξ)

)
ϕj(ξ′)ϕj(ξ′′)φj(ξ).

The ϕj(ξ′)ϕj(ξ′′)φj(ξ) portion is supported in a “annulus” a distance 2−j from
both the top and sides of the cylinder. It can be thought of as taking a two-
dimensional square with sidelength 2−j , rotating it around the x-axis through a
third dimension, then rotating the result around the y-axis through a fourth di-
mension. The result is essentially a neighborhood of a torus imbedded in four
dimensions. The ϕ(2Mh(·)) term is supported a distance 2−M from |ξ′| = |ξ′′|.
Together these are supported in a truncated “cone” of thickness 2−M and “height”
2−j in ξ′ and ξ′′ (see figure 1).
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2−j
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-

6

|ξ′|

|ξ′′|

Figure 1. Support of the decomposition pieces

In a final decomposition, we introduce an equispaced cutoff χ. This will reduce
the support from a cone to a sum of 2−M neighborhoods of tori, with which analysis
is much easier. Let χ ∈ C∞0 , suppχ ⊂ (−1, 1), and

∑∞
N=−∞ χ(· −N) ≡ 1.

ΦMjν(ξ) = χ
(
2M(1+ε)

(
|ξ′| − ν

2M(1+ε)

))
ϕ̃

(
2Mh(ξ)

)
ϕj(ξ′)ϕj(ξ′′)φj(ξ),

ϕ(2Mh(ξ))µjk(ξ) = 2−M2−j(λ−1)
∑

ν∈V
ΦMjν(ξ).

The index set V represents the integers where ΦMjν is not identically zero. Due to
supports of the various terms, the size of the set V is of the order 2M−j2Mε.

Lemma 2.3.

(2.22) ‖ΦMjν‖M4 . 2Mε.

Proof. The multiplier ΦMjν is a bump function supported on an R2 annulus crossed
with another R2 annulus. We use a Taylor expansion to separate the ξ′ and ξ′′

variables, allowing us to apply the R2 Bochner-Riesz result twice.
We proceed by taking ϕ̃

(
2Mh(ξ)

)
φj(ξ) and expanding it in a Taylor series in

the |ξ′| variable around ν
2M(1+ε) . Denote χν(|ξ′|) = χ

(
2M(1+ε)

(|ξ| − ν
2M(1+ε)

))
.

ΦMjν(ξ) = χν(|ξ′|)ϕj(ξ′)ϕj(ξ′′)

·
∞∑

n=0

1
n!

∂n

∂|ξ′|n
[
ϕ̃(2Mh(ξ))φj(ξ)

]∣∣
|ξ′|= ν

2M(1+ε)

(
|ξ′| − ν

2M(1+ε)

)n

=
∞∑

n=0

χν(|ξ′|)
(
ϕj(ξ′)

(
|ξ′| − ν

2M(1+ε)

)n

2M(1+ε)n
)

·
(

ϕj(ξ′′)
1
n!

∂n

∂|ξ′|n
[
ϕ̃(2Mh(ξ))φj(ξ)

]∣∣
|ξ′|= ν

2M(1+ε)
2−Mn

)
2−εn.(2.23)
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Each derivative in the series loses 2M but we gain 2−M(1+ε) due to the support
of χν(|ξ′|). Therefore we need only consider the first N terms. The ξ′ and ξ′′

variables are now separate, and Theorem 2.1 applies to both the multipliers in the
parentheses in line 2.23. The lemma follows immediately. ¤

One more lemma is necessary to obtain some gain using the orthogonality of the
χν decomposition.

Lemma 2.4. Let V be a finite interval in the integers Z. Then for 2 ≤ p ≤ ∞,
1
p′ + 1

p = 1 and f ∈ Lp,

(2.24) ‖
∑

ν∈V
F−1[χν ] ∗ f‖Lp .

(∑

ν∈V
‖F−1[χν ] ∗ f‖p′

Lp

) 1
p′

.

Proof. This lemma is easily verified for p = 2 using Plancherel’s theorem.
The lemma follows by interpolation and duality from the p = 2 bound and the

following p = 1 bound (triangle inequality):

‖
∑

ν

F−1[χν ] ∗ f‖L1 ≤
∑

ν

‖F−1[χν ] ∗ f‖L1

=

(∑
ν

‖F−1[χν ] ∗ f‖1L1

)1

.

¤

Putting these to lemmas together allow us to finish Case (ii).

Lemma 2.5. Let λ > 0. The following sums converge:

∑∞
j=2 ‖mjj‖M4 ,(2.25)

∑∞
j=2 ‖mj,(j+1)‖M4 ,(2.26)

∑∞
j=2 ‖m(j+1),j‖M4 .(2.27)

These sums represent all multiplier pieces where |k − j| ≤ 1 and k, j 6= 1.
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Proof. As before, we assume j = k. The other two cases follow similarly.

‖F−1[ϕ(2Mh(ξ))µjk(ξ)] ∗ f‖L4 = 2−M2−j(λ−1)‖
∑

ν∈V
F−1[ΦMjν ] ∗ f‖L4

≤ 2−M2−j(λ−1)

(∑

ν∈V
‖F−1[ΦMjν ] ∗ f‖

4
3
L4

) 3
4

(2.28)

. 2−M2−j(λ−1)

(∑

ν∈V
(2Mε‖f‖L4)

4
3

) 3
4

(2.29)

. 2−M2−j(λ−1)2Mε
(
2M−j2Mε‖f‖

4
3
L4

) 3
4

(2.30)

= 2−
M−j

4 2−jλ2
7
4 Mε‖f‖L4 ,(2.31)

‖F−1[µjj ] ∗ f‖L4 .
∞∑

M=j−6

‖F−1[ϕ(2Mh(ξ))µjk(ξ)] ∗ f‖L4(2.32)

.
∞∑

M=j−6

2−
M−j

4 2−jλ2
7
4 Mε‖f‖L4(2.33)

. 2−jλ2
7
4 jε.(2.34)

The final term can be summed in j for λ > 7
4ε. Note the sum in M starts at j − 6

due to the supports of ϕj and ϕ(2Mh(·)). ¤

2.3. Case (iii) |k − j| ≤ 1, k = 1 or j = 1.

Lemma 2.6.

(2.35) ‖F−1[m11 + m12 + m21] ∗ f‖Lp . ‖f‖Lp

for all f ∈ Lp(Rd ×R), 1 < p < ∞ and λ > 0.

Proof. In this region we use the following theorem of Seeger [6] to extend our result
to the origin. The theorem applies with ϕ defined as in the rest of this paper.

Theorem 2.7 (Seeger). Suppose that m is a bounded function which satisfies for
some p, 1 < p < ∞, ε > 0

sup
t>0

‖ϕ(| · |)m(t·)‖Mp ≤ A(2.36)

sup
t>0

∫

|x|≥w

|F−1[ϕ(| · |)m(t·)](x)|dx ≤ B(1 + w)−ε(2.37)

Then
‖m‖Mp . A[log(2 +

B

A
)]

1
p− 1

2 .

We begin by decompose the multiplier in this region similar to the way we did
in (2.2). Note we work with µ11 and the other two multipliers are similar.

µ11(ξ) =
∞∑

M=0

ϕ(2Mh(ξ))[(1− |ξ′|)λ − (1− |ξ”|)λ]ϕ1(|ξ′|)ϕ1(|ξ”|)

Denote the terms in the sum µM (ξ). By analyzing the multiplier ϕ(| · |)µM (t·),
we can obtain boundedness results for µ11. First we note that due to the support
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of µM , ϕ(| · |)µM (t·) is only non-zero if t < 2. By analyzing derivatives of the
multiplier and using the fact that t is bounded, we see that

sup
t>0

‖ϕ(| · |)µM (t·)‖L2
α
≤ Cα2−M independent of t

We use this bound for the condition (2.36) in Theorem 2.7.
We obtain a bound of the form on (2.37) by doing integration by parts 6 times.

Note that in the integration by parts we lose at most 2M on each derivative since
that is the loss in the multiplier’s worst direction. We begin by defining the set Ωω

j .

(2.38) Ωω
j = {ξ = {ξ1, ξ2, ξ3, ξ4} ∈ R2 ×R2, |ξ| > ω and |ξj | = max

k=1,...,4
|ξk|}

sup
t>0

∫

|x|>ω

|F−1[ϕ(| · |)µM (t·)](x)|dx . sup
t>0

∫

|x|>ω

∣∣∣∣
∫

eix·ξϕ(|ξ|)µM (tξ)dξ

∣∣∣∣ dx

. sup
t>0

4∑

j=1

∫

Ωω
j

∣∣∣∣∣
∫

eix·ξ

|xj |6
∂6

∂ξ6
j

(ϕ(| · |)µM (t·))(ξ)dξ

∣∣∣∣∣ dx(2.39)

. sup
t>0

4∑

j=1

∫

Ωω
j

∫
26M

|xj |6 χsupp(ϕ(|·|)µM (t·))(ξ)dξdx(2.40)

. sup
t>0

4∑

j=1

∫

Ωω
j

25M

|xj |6 dx(2.41)

. 25M (1 + ω)−ε independent of t(2.42)

We then obtain a good bound on each µM and can sum in M .

‖µM‖Mp . 2−M

[
log

(
2 +

25M

2−M

)]| 1p− 1
2 |

. M | 1p− 1
2 |2−M

⇒ ‖µ11‖Mp .
∞∑

M=0

M | 1p− 1
2 |2−M

< ∞
This bound on ‖µ11‖Mp applies for 1 < p < ∞ and for all λ > 0. ¤

Combining the results of the three cases completes the proofs for Theorem 1.1.
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