
GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 1

Introduction and background

Street addresses and geocoding (Bolstad, p395-397, 301-303)
An important element of any GIS is the accuracy with which your data are spatially referenced. In many
applications, street addresses are the preferred way to spatially reference locations. Customer and client
data, crime incident reports, and emergency 911 responses, are just a few examples that rely on street
addresses. Although most users can query and summarize their numeric data by unique street or zip
code values, they will eventually need those pesky coordinates to plot their data and to visualize them
with other spatial data layers.

Geocoding is a GIS workflow. Every time you’ve ever searched for an address using Google
Maps, Bing Maps, Apple Maps, OpenStreetMap, Yahoo Maps, etc., you’ve used geocoding. Geocoding
is a workflow that creates point features (spatial data with coordinates) by georeferencing street address
data (text data without coordinates). Geocoding is commonly applied during marketing, sales, or service
area analyses; when crime mapping; or in dispatch or delivery applications. Geocoding one address with
your browser is easy. Geocoding in bulk, however, requires more.

To geocode in bulk you need an “address locator.” An address locator is a database object that
can be composed of building polygons (with address attributes), road centerlines (with address
attributes), or simple town or city centroids. Address locators can also be composed of multiple datasets
and set up so they are searched in order - from most certain to least certain – to increase the chances of
getting a point.
 Google Maps uses an address locator that is composed of multiple layers. During search, the text
of your address is compared against Google’s buildings database first; if it finds a matching address then
it returns a pin (red balloon symbol) after grabbing the building’s coordinates. Figure 1 shows “350

Maple Street” was successfully geocoded (address matched ✔, coordinates assigned ✔) in the polygon

with the matching address.

Figure 1. A geocoded address via building polygon search.

 If Google doesn’t find a matching address in its buildings database, then it will search its road
database next. Google’s road segments are attributed with address ranges (from this address # to that #).
Figure 2 shows the address “1113 County Road” can be found along the line segment attributed with
name = “County Road” AND from = “994” AND to = “1129.” As Bolstad (2016: p326) describes, the
coordinates are then found by linear interpolation. In this example, address number 1113 is an odd
number and 88% of the way between 995 and 1129 (Example 1). So, the address is plotted at the spot
that marks 88% of the line segment’s Shape_Length. In this example, the address is plotted on the left
side of the road segment because the odd range was attributed to the left side.

((1113search – 995from) / (1129to – 995from)) * shape_length = 0.88 * shape_length Ex. 1.

Maple Street

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 2

Figure 2. Geocoding via road segment search and linear interpolation.

The typical geocoding workflow has five steps :

1. Build or obtain a high-quality reference dataset: often a line feature class representing street

centerlines is used (but it could also be a polygon feature class representing buildings, or a point
feature class representing post offices). The feature class must have a spatial reference system
AND street address data in its attribute table. Also, the address data must be conform to one of
these standard addressing styles;

a. Five standard addressing styles:

i. US ADDRESS – DUAL RANGES: Street centerlines with an address range, place name,
and ZIP code for each side of every line segment (e.g., a range of odd numbers on one
side, a range of even numbers on the other side);

ii. US ADDRESS – ONE RANGE: Street centerlines with an address range, place, and ZIP
code data for both sides of each line segment (left vs. right is ignored);

iii. US ADDRESS – SINGLE HOUSE: Polygons (or polygon centroids) that represent
ownership parcels;

iv. US ADDRESS – ZIP 5: Polygons (or polygon centroids) that represent 5-digit ZIP code
areas;

v. GENERAL: Polygons (or polygon centroids) that represent places or landmarks.

2. Build an address locator: An address locator is a database object that facilitates both the address-
matching and the coordinate assignment processes;

3. Prepare a table of street address: Your ‘raw’ table of addresses should be prepared using the
same addressing style that’s used by your reference dataset (see 1.a above).

4. Find matching addresses between table and locator.

5. Assign coordinates from the reference dataset to the matched addresses (and don’t assign
coordinates to records with unmatched addresses)

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 3

In the USA, street addresses can take many forms. In western states, for example, it is common for street
names to reflect the underlying Public Land Survey System. So, you might encounter an address like:

“56 North Townline Road” or “250 Section Line Road”.

In the Mid-Atlantic region, we might encounter an address like:

“1950 Fruitville Pike” or “5026 Old Sowell Mill Pike”

which don’t reflect any kind of surveying system, but landmarks along former toll roads that radiated
from central places.

GIS analysts that maintain national address databases need to be aware of every conceivable
format that a street address can take. So, each piece of an address has a name (see Table 1).

Table 1. Elements of street addresses used around the United States

Address element name Example

Address number prefix W19½ Colbert Road

Address number base W19½ Colbert Road

Address number suffix W19½ Colbert Road

Complete address number W19½ Colbert Road

Street name pre modifier 44 Old North Canal Street

Street name pre directional 44 Old North Canal Street

Street name base 44 Old North Canal Street

Street name type (or suffix) 44 Old North Canal Street

Street name post directional 95 Church Street West

Street name post modifier 95 Church Street Bypass

Complete street name 44 Old North Canal Street

Complete street name and number 95 Church Street Bypass

The problem

The Borough of Carlisle, PA, is home to many places that sell pizza. Some are open for brunch, but not
all. Most deliver, but not all. There’s actually a surprising amount of variability in Carlisle’s pizza
market. So, there’s a need to analyze and describe the spatiotemporal1 variability in the pizza
marketplace. The purpose of this lab is to analyze and describe Carlisle’s spatiotemporal pizza market.

1 [spatiotemporal] adj. Having both spatial and temporal qualities. Existing in both space and time.

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 4

Objectives
To analyze and describe Carlisle’s spatiotemporal pizza market, we need to obtain the following pieces
of information:

1. We need to know where the pizza shops are located.

2. We need to know when each pizza shop opens and closes for business.

3. We need to know when each pizza shop begins and ends deliver service.

To accomplish our first objective, we’re going to geocode a table of pizza shop addresses against
Cumberland County’s street centerline dataset (the high-quality reference dataset).

Table 1: Access and download these datasets from the course website.

Data originator Data distributor Dataset, by name

Dr. Drzyzga

Course website

carlislePizzaShops.xlsx

Cumberland County GIS cumberlandCountyGIS.zip

Methods

Step 1. Build or maintain a reference dataset
Start in ArcCatalog. Create a folder for this lab and, in it, create a new file geodatabase called
“gis3pizza_<your initials here>.gdb”. In the geodatabase, create a new feature dataset called
“carlisle” and tie it to the metric (NAD83) State Plane PA-S coordinate system. Import any
geospatial data you downloaded from the course website into your “carlisle” feature dataset.

Preview your street centerline data. The lines will look like typical road data, but these
lines are attributed very differently than most; they’re attributed with street address ranges.
Each line segment has attributes that indicate the street name, street type, the address range on
each side of the segment (there’s a Left side and a Right side), and the ZIP code indicators for
each side of the segment (there’s a Left side and Right side). Preview the attribute table. Pay
particular attention to the fields STREETNAME, STREETSUF, PREFIXDIR, POSTDIR, LFROM,
LTO, RFROM, RTO, LZIP and RZIP. Use Figure 3 below as a guide.

NOTE: If working at home, then you might have to Customize… your ArcCatalog Options by
changing the default Metadata style from Item Description to FGDC Metadata.

http://webspace.ship.edu/sadrzy/geo420/index.html

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 5

Figure 3: A sketch of a centerline segment representing “Oak Avenue” that’s been annotated
with street name, start and end nodes, segment side indicators, and both address ranges. The
implied direction (from the start nodes to the end nodes) does not indicate the direction that
traffic flows or that Oak Avenue is a one-way street; rather, it indicates the direction that street
numbers increase through both the left and right address ranges. Also revealed in this sketch is
the potential for coordinate displacement during geocoding. Note the first address position on
the line is not co-located with the actual location of the first house on Oak Avenue.

Steps 2 and 3. Select a standard address locator style and build an address locator object
Stay in ArcCatalog. Find and use the Geocoding tool to Create Address Locator….

Setting up an Address Locator is easy to do. Choose the US Address – Dual Ranges style – a
nationally recognized standard; use your projected centerline attribute table as your Primary
Table (find the ‘Role’ parameter); and then map the fields in your centerline attribute table to
the awaiting fields (*) in your address locator (see Table 2 below). Your table field names do not
need to be identical; they just need to carry the expected elements into the address locator.
Output your address locator file to your lab folder (and not your geodatabase). OK.

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 6

Table 2. Mapping field names in the street centerline attribute table to the address locator.

Field Name (in the Address Locator) Alias Name (in the centerline feature class)

 Feature ID ID
* From Left LFROM
* To Left LTO
* From Right RFROM
* To Right RTO
 Prefix Direction PREFIXDIR
 Prefix Type <None>
* Street Name STREETNAME
 Suffix Type STREETSUF
 Suffix Direction POSTDIR
 Left City LCITY
 Right City RCITY
 Left ZIP LZIP
 Right ZIP RZIP

* Indicates a required input.

Step 4. Get familiar with your data and your Address Locator
Close ArcCatalog and open a session of ArcMap. Set your default geodatabase and add your
projected centerline features as a new layer.

Next, label your street centerlines. Use this Python expression to build the complete
label for each feature:

[PREFIXDIR] + " " + [STREETNAME] + " " + [POSTDIR] + " " + [STREETSUF]

Next, symbolize all line segments that were attributed as Avenues with a light grey line with a
light grey end arrow. Symbolize all others with a black line and a black end arrow. (Figure 4).

Figure 4: Symbolizing line segment directions. In Carlisle, back alleys are called ‘avenues’.

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 7

Next, turn on the Geocoding toolbar. Use the toolbar to manage and add your address

locator; make your address locator the active Address Locator.

Use the toolbar to type in and find the address “53 West South Street, Carlisle, PA 17013”,
which is where Carlisle Borough Hall is located. The location should flash on screen.

Next, build a two-part query to select all the segments of West Willow Street and the segments
of other streets that touch it.

First, use Select by Attributes to select segments where:

PREFIXDIR = 'W' AND STREETNAME = 'WILLOW' AND STREETSUF = 'ST'

The first part of your query should return 7 selected features.

Second, use Select by Location to select features from centerlines that are within a distance of
3 meters of the selected set of centerlines. Create a layer from your 23 selected features then
turn off the original centerlines layer. Re-label and re-symbolize if the labels and symbols don’t
carry over. Use the Identify button/tool to explore the attributes of each line segment.

To help you get familiar with how the Address Locator works, find the Address Inspector
button on the toolbar and, with your mouse pointer down, trace the line segments that comprise
WEST WILLOW STREET. Notice how the address number increases or decreases as you go up
or down the address range. Be sure to try both sides of the street.

Question 1: Use pen and paper to sketch W WILLOW ST and the adjoining street segments.
Annotate your sketch with symbols and labels that indicate:

1. all the complete street names,
2. start and end nodes,
3. street sides,
4. and address ranges (see Figures 1, 2 and 3 for examples).

Also, sketch and label the spot where we should expect to find “234 W Willow Street”.

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 8

Step 4. Prepare a target table of street address to be geocoded.
Create a table view by adding the worksheet from your carlislePizzaShops.xlsx
workbook. Next, export the table view to your geodatabase. Proceed with the new geodatabase
table and remove the view of your Excel ® table.

The addresses in your new table are pretty well behaved (but there are a few typos). The
SITUS field2 contains the complete address for each pizza shop, but each street name, place
name, state abbreviation, and ZIP code element belongs to one long text string. You need to
parse these long text strings into their elemental substrings.

Add five new fields to your target table: Street (text, 40); City (text, 20); ZIP (text, 5);
Testing123 (short integer); and TestingTXT (text, 70).

You now need to populate your new !Street!, !City! and !ZIP! fields. Yes, you could open
an edit session and re-type everything, but you won’t learn how to handle big data that way.
Instead, I want you to practice using the Python parser in ArcMap’s Field Calculator to parse
your SITUS strings into their Street, City and ZIP elements. The two “Testing” fields you added
are extras; they are safe places to try Python expressions BEFORE you try calculating your
Street, City and ZIP values. To accomplish this task, you will need to recognize and exploit the
structure of your data.

Figure 5 will help you remember Python’s indexing system for text strings. Table 3
presents some common string methods. String methods can be combined.

3 2 N o r t h S t

Figure 5. Python’s indexing system for text strings.

Table 3. Some common methods for parsing text strings. A complete list of Python methods is
available at: http://docs.python.org/library/stdtypes.html#string-methods

Assume we have a table that contains one record and a field named STRING.

STRING = “32 North St “ # notice the trailing space character in this example

2 A situs address is the industry term for a physical street address, which is commonly used by emergency
responders like fire and police. Although often similar, a situs address is not to be confused with a postal mailing
address.

0 1 2 3 4 5 6 7 8 9 10 11 12

http://docs.python.org/library/stdtypes.html#string-methods

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 9

You can use integer fields to do stuff like:

len(!STRING!) Returns the length of (the highest index associated with) the input
string, which will include any leading or trailing space characters.

len(!STRING!) returns the integer 12

!STRING!.find(“sub”) Returns the highest index in the input string where substring
“sub” is found.

 !STRING!.find(“North”) returns the integer 3

You can use your text fields to do stuff like

!STRING![i] Returns the one character in the input string that occurs after the
ith index.

!STRING![5] returns “r”

!STRING![i:j] Returns the substring between the ith and the jth indexes.

!STRING![6:11] returns “th St”

!STRING![-8:] returns “orth St “

!STRING!.strip() Returns a copy of the input string with all leading or trailing
white spaces removed.

!STRING!.strip() returns “32 North St“

!STRING!.replace(“old”,”new”) Returns a copy of the input string with all occurrences of
substring “old” replaced by substring “new”.

!STRING!.replace(“Nor”,”Sou”) returns

“32 South St “

!STRING!.replace(“Nor”,”Sou”).strip() returns

“32 South St“

!STRING!.partition(“sep”)[i] Reading from left to right, this method splits the input string at
the first occurrence of “sep”, and returns a 3-tuple containing the
substring that occurs before the separator [0], the separator itself
[1], and the substring that occurs after the separator [2]. If the
substring is not found, then it will return a 3-tuple containing the
entire input string [0], followed by two empty strings, [1] and [2].

!STRING!.partition(“t”)[0] returns “32 Nor“

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 10

!STRING!.partition(“t”)[1] returns “t“

!STRING!.partition(“t”)[2] returns “h St “

!STRING!.rpartition(“sep”)[i] Reading in reverse from right to left, this method splits the input
string at the first occurrence of “sep”, and returns a 3-tuple
containing the substring that occurs before the separator [0], the
separator itself [1], and the substring that occurs after the
separator [2]. If the substring is not found, then it will return a 3-
tuple containing the entire input string [0], followed by two
empty strings, [1] and [2].

!STRING!.rpartition(“t”)[0] returns “32 North S“

!STRING!.rpartition(“t”)[1] returns “t“

!STRING!.rpartition(“t”)[2] returns “ “

Question 2: If STRING = “95 Church Street Bypass”, then what should the following
Python expression return? !STRING![0:!STRING!.find(“Street“)].strip()

Question 3a. Look at your Excel worksheet. How are your datetime values displayed in their
cells? How are your datetime values stored in their cells? Is midnight stored as the beginning of
a day or the end of a day?

Question 3b. Look at your geodatabase table. How are your datetime values displayed and
stored in their cells? Is midnight stored as the beginning of a day or the end of a day?

Question 4: Report three Python string expressions that you used to parse your SITUS data.
Explain how each expression works by using the address for Gino & Joe’s Famous NY Pizza as
a worked example. I will evaluate both your syntax and your logic.

Read Step 5a and 5b (next page) before hitting any buttons.
Step 5a. Match addresses records in the table against the addresses in the Address Locator.
Use the Geocoding toolbar to:

1. Make sure your Address Locator is still the active Address Locator.
2. Use the Mailbox button to Geocode Addresses
3. Map the fields in your slices table to the fields in the Address Locator (Street, City, ZIP).
4. Next, ensure your output features will be written to your geodatabase.
5. OK.

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 11

Step 5b. Rematch any pizza shop addresses that were not matched.
Now is when you get to see how well your addresses were matched and, if needed, you can
make manual adjustments. It is very common to have match rates in the 70-80% range; lower if
you don’t prepare your data well. Hitting the [REMATCH] button will open an interactive tool
that lets you deal with any troublesome addresses on the fly.

Question 5a. How many addresses (# and %) were matched?
Question 5b. How many addresses in Carlisle (# and %) were matched?

Question 6. List the pizza shops names and addresses in Carlisle that were either Unmatched
OR received a matching Score < 80%. Interrogate your input table AND your address locator to
discover why each address received the score it did.

Question 7. Now it is time to identify the pizza shops that were not plotted correctly. So,
which ones?

Figure 3 shows us how a perfectly matched address might not get perfect coordinates. In Figure 3, the
centerline that represents “Oak Avenue” is attributed with dual address ranges; one range of odd numbers
for the left side and a range of even numbers for the right side. Now, compare the location of the building
labeled “101 Oak Avenue” with the location of the 101 attributed to the left-side range; the spots are close but
not identical. The best any geocoding software can do is to grab coordinates from the reference data - not
from coordinate system itself.

Step 6. Building definition queries (Bolstad, p321-331) using Date fields (ESRI)
Four fields in your pizza shop attribute table are datetime fields (Datetime fields can store dates,
times, or date-and-time elements). Datetimes are efficient ways to store lots of information.
Notice how the space separates the time part from the date part. Notice how colons are used to
separate the three time parts (hour, minute, second). Notice how slashes are used to separate
the three date parts (year, month, day).

10/10/2017 04:00:00

Although datetime fields are efficient, they are difficult to query. It is often easier to reduce the
problem by pulling out the just the pieces you need to query.

Add a new short integer field to your pizza shop attribute table. Next, right-click your new
integer field and open the Field Calculator. Switch the parsing language from VB to Python,
[Load…] the expression contained in the file named dataPart_py.cal, set it up, then
calculate. Use the Python expression to pull out the pieces of data you need to answer the
following questions.

http://resources.arcgis.com/en/help/main/10.1/index.html#/ArcGIS_field_data_types/003n0000001m000000/

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 12

Question 9. Build a reference map (designed to fit perfectly into your report; TIF format; at least
600 DPI, LZW file compression) that shows the location of every pizza shop in Carlisle
regardless of opening or closing times.

Question 10a. Build a reference map (designed to fit perfectly into your report; TIF format; at
least 600 DPI, LZW file compression) that shows where people in Carlisle can get dine-in pizza
during lunch (i.e., between 11:45 AM and 1:15 PM). After building a user-friendly figure
caption, add another sentence that reports your Definition Query expression (syntax counts).

Question 10b. Read the map you built and build an accompanying paragraph that describes the
spatial distribution of the lunch-time dine-in pizza market.

Question 11a. Build a reference map (designed to fit perfectly into your report; TIF format; at
least 600 DPI, LZW file compression) that shows which shops in Carlisle will deliver pizza after
11 PM. After building a user-friendly figure caption, add another sentence that reports your
Definition Query expression (syntax counts).

Question 11b. Read the map you built and build an accompanying paragraph that describes the
spatial distribution of the late-night delivery market.

Question 12. Consult and interpret your data and your maps. Describe in words how the
spatiotemporal pizza market changes throughout the day in Carlisle, from lunch, through
dinner and into the late night.

Step 7. Build URLs
This last step has nothing to do with geocoding. Rather, it will show you another way to use
the field calculator.

You likely noticed that there’s an attribute field called “PartialURL” in your pizza shop
attribute table; it contains parts of the hyperlinks that can take you to the review site Yelp.com.
We can construct complete URLs from the partial URLs by adding the missing pieces of text.
Start by adding a new text field: URL (text, 70).

Next, right-click your new URL field and open the Field Calculator. Switch the parsing
language from VB to Python, [Load…] the expression contained in the file named
makeURL.cal, then calculate.

GIS III: Advanced GIS
Lab 03: Parsing street address strings with Python, geocoding and some simple date-a analysis.

 Page 13

Deliverables

Lab report
Complete a well-written report of the lab exercise. Include your name, date, and page

numbers. Your report should include five sections and headings: Purpose, Objectives, Methods
and Data, Results and Answers, and Summary. Provide concise purpose and objectives using
your own words, and describe the important methods and input data you used to address the
tasks listed above. In the Results and Answers section, address any issues or questions
prompted during the lab. Include tables and figures in the same order you refer to them.
Summarize your work in the Summary section. Be sure to identify anything that you learned,
found interesting or difficult, or anything that remains problematic. Use the summary to talk to
me – or to ask lingering questions.

All lab reports should be typed and printed on 8.5” by 11” stock. Before drafting your

report, set your right and bottom page margins to be 0.7”; set your left margin to 1.2”; set your
top margin to 1.2”; and set your header margin to 0.7”. Put your name and the lab title in the
document header. Set the normal font face to be Bookman Antiqua, Bookman Old Style, or
Georgia; never use Times New Roman or any kind of decorative font. Also, set the normal font size to

be 11 points. Use single line spacing. Include page numbers on every page. Major section
headings should be in bold face. All figures and tables must be inserted into the body of your
report and conform to the formatting and margin requirements. Numeric table fields should be
right justified with the decimal points aligned.

