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Abstract:

This study examined differences in nitrogen solutes and groundwater flow patterns between a riparian wetland
dominated by the N2-fixing shrub, Alnus incana ssp. rugosa, and an upstream coniferous forested riparian wetland
along a stream of the Adirondack Mountains, where some surface waters are susceptible to nitrogen excess. Channel
water NO3

� was up to 16 µmol l�1 greater in the alder reach, with peaks following maxima in groundwater dissolved
inorganic nitrogen (DIN). NO3

� at 25 cm depth was 30 µmol greater in the alder than in the conifer reach in April, and
24 µmol l�1 greater than channel water and 30 µmol l�1 greater than that of 125 cm groundwater in June. Dissolved
organic nitrogen and NH4

C concentrations increased between 25 and 75 cm depths in both wetlands during the growing
season. Inorganic nitrogen increased between the hillslope and stream in both wetlands, with the greatest increases in
the alder reach during the dormant season. Greatest subsurface DIN (120 µmol l�1) occurred at 75 cm in the alder
reach, within 1 m of the stream, between November (120 µmol l�1 NH4

C) and a January thaw (60 µmol l�1 each of
NH4

C and NO3
�). Concentrations of deeper groundwater at 125 cm during this period were lower (10–30 µmol l�1).

Lateral flow from the stream channel occurred in the alder reach during the dormant season, and channel water
contribution to groundwater was correlated strongly to NO3

� at 25 cm. These results indicate that nitrification is
stimulated in the presence of alders and oxidized exchange flow, producing NO3

� that may contribute to elevated
channel water NO3

� during periods of peak flow. Copyright  2004 John Wiley & Sons, Ltd.
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INTRODUCTION

Surface waters in the Adirondack Mountains in New York State, such as seepage and drainage lakes with
thin glacial till in surrounding watersheds, are sensitive to atmospheric deposition of acid anions due to low
acid neutralizing capacity (ANC; Driscoll et al., 1991, 1998). Although significant declines in SO4

2�, NO3
�

and Cl� concentration in deposition have occurred in the region with correlated declines in lake water SO4
2�,

the ANC of many surface waters has not increased (Driscoll et al., 1998). While there has been increased
examination of NO3

� as an acid anion (Likens et al., 1998) and of wetland influence on nitrogen transport
between hillslopes and streams (Cirmo and McDonnell, 1997), the influence of nitrogen-fixing alder shrubs
on spatial and temporal patterns of nitrogen chemistry in wetlands of the region has not been quantified.

The actinorhizal N2-fixing shrub, speckled alder, Alnus incana ssp. rugosa (DuRoi) Clausen, often occurs
along stream sides and in wetlands in the northeastern USA and Canada (Furlow, 1979). Speckled alder
dominates the Scrub-Shrub 1 (SS1) wetland cover type (Cowardin et al., 1979), the second largest wetland
cover type after coniferous forest (FO4) in the Adirondack Mountains (Roy et al., 1996). Nitrogen fixation
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in a riparian SS1 alder wetland in the central Adirondacks was estimated to be 37–43 kg ha�1 year�1 (Hurd
et al., 2001). In other parts of eastern North America, nitrogen accretion in speckled alder wetlands may be
85–167 kg ha�1 year�1 (Daly, 1966; Voigt and Steucek, 1969). Speckled alders in the region derive 85–100%
of foliar nitrogen from fixation (Hurd et al., 2001) and do not resorb foliar nitrogen prior to litter fall (Bischoff
et al., 2001).

Elevated nitrification and nitrogen leaching occur in alder (A. rubra (Bongard) and A. incana ssp. tenuifolia
(Nuttall) Breitung) stands of western North America (Coats et al., 1976; Van Miegroet and Cole, 1984, 1985;
Binkley et al., 1992; Hart et al., 1997), flood plain soils with A. incana ssp. tenuifolia (Van Cleve et al.,
1993), and drained peatlands dominated by A. glutinosa (L.) Gaertner (Kazda, 1995). In an Adirondack
forested watershed, the presence of speckled alder increased NO3

� content and net nitrification rate of wetland
soil (Ohrui et al., 1999). Stottlemyer et al. (1995) measured average soil NO3

� of 56Ð5 mg m�2 in speckled
alder stands, which is three times that of sugar maple stands, seven times that of spruce stands, and 10
times that of birch stands at Isle Royale in northern Michigan, USA. Stottlemyer et al. (1995) also measured
greatest nitrification under alders between July and the following May, and noted that alder stands occurred
on previously flooded low-elevation sites, where soils were saturated to within 5 cm of the surface into June.

Recent studies have focused on hydrological interactions with nitrogen transformations in riparian and
hyporheic zones (Dahm et al., 1994; Cirmo and McDonnell, 1997; Hedin et al., 1998; Hill and Lymburner,
1998). Goldman (1961), Dugdale and Dugdale (1961), Coats et al. (1976) and Wondzell and Swanson (1996)
have considered the contribution of western A. tenuifolia or A. rubra to surface water inorganic nitrogen or
primary productivity, but the effects of alders on riparian ground and surface water nitrogen in eastern North
America remain unquantified.

This study compares seasonal and spatial patterns of nitrogen solutes between a riparian wetland dominated
by N2-fixing alders (classified as SS1) and an upstream wetland dominated by conifers (FO4), in a region
where many surface waters are sensitive to anthropogenic sources of nitrogen and acidity. Because dense
alders in these ecosystems fix nitrogen of approximately 40 kg ha�1 year�1 (85–100% of annual foliar
nitrogen (Hurd et al., 2001)), and may stimulate nitrification (Ohrui et al., 1999), we expected elevated
concentrations of nitrate and other nitrogen solutes in the alder wetland, particularly during periods of low
biological nitrogen demand (autumn and winter). Moreover, we expected that nitrogen solute concentrations in
shallow groundwater would increase between hillslope and stream in the alder wetland, due to low biological
demand by nitrogen-fixing vegetation (Hurd et al., 2001), stimulated riparian nitrogen mineralization (Van
Cleve et al. 1993) and potential oxygenation of near-stream soils by exchange flow (contribution of oxygenated
channel water) that may stimulate nitrification but decrease denitrification (Triska et al., 1989, 1993).

SITE DESCRIPTION

Research was conducted on the upper Adjidaumo stream at the Huntington Wildlife Forest (HWF) located
in the central Adirondack Mountain region of New York (Figure 1). The HWF is a National Atmospheric
Deposition Program (NADP) and National Trends Network (NTN) monitoring site, and has been the locus of
many biogeochemical studies (Raynal et al., 1985; Johnson and Lindberg, 1992; Mitchell et al., 1994, 1996;
Ohrui et al., 1999).

Soils, surficial geology, and bedrock geology at HWF are typical of the Adirondack region and are described
in Somers (1986) and Ohrui et al. (1999). Mean annual temperature is 4Ð4 °C, with a dormant mean of
�2Ð8 °C and a growing-season mean of 14Ð3 °C. Mean annual precipitation is 101 cm (Shepard et al., 1989).
Upland vegetation is mixed northern hardwood forest. The lower elevations are characterized by red spruce
(Picea rubens Sarg.), balsam fir (Abies balsamea (L.) Miller), eastern hemlock (Tsuga canadensis (L.) Carr.),
and yellow birch (Betula alleghaniensis Britton). Speckled alder dominates a 5 ha SS1 wetland along the
Adjidaumo stream, and other riparian wetlands at HWF (Bischoff et al., 2001; Hurd et al., 2001).

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 0–0 (2004)
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Figure 1. Study site locations at HWF in the Adirondack Park of New York State

METHODS

Nitrogen concentrations and groundwater flow patterns were compared in two wetland reaches of Adjidaumo
stream. Vegetation cover was estimated by line intercept, with three transects in each reach running
perpendicular to the stream. The first reach, classified as SS1, was dominated by speckled alder (59% cover)
and A. balsamea (41%), with Calamagrostis canadensis (Michx.) P. Beauv. (36%) and Clematis virginiana
L. (35%) dominating the ground layer. The distance between hillslope and stream is approximately 30 m.
Beaver activity at the downstream end of this reach resulted in visible, year-round loss of channel water to
the wetland. The reference reach, classified as FO4, was approximately 500 m upstream (Figure 1), with a
distance between hillslope and stream of approximately 30 m. Canopy vegetation in this reach was dominated
by P. rubens (33%), A. balsamea (16%), T. canadensis (17%) and B. alleghaniensis (15%), with C. canadensis
(25%) and Rubus spp. (23%) dominating the ground layer.

Water sampling and analysis

Both wetland reaches were instrumented in May 1996 with three transects of nested piezometers to sample
the hydrologic head and the concentrations of NO3

�, NH4
C, total nitrogen, and Cl� as a hydrologic tracer,

at 20–25, 70–75, and 120–125 cm depths. The 20–25 cm depth corresponded to maximum depth to water
table, immediately below the rooting zone. Organic substrate was generally present at 70–75 cm, and the
125 cm piezometers penetrated till or alluvium in both wetlands. Piezometers were constructed of 2Ð54 cm
ID PVC capped at the bottom, and slotted and screened for the bottom 5 cm to facilitate water collection.
Transects ran perpendicular to the stream between the channel and hillslope, and were spaced 10 m apart.
The first three piezometer nests were spaced at 5 m intervals within transects starting �1 m from the stream
(evenly throughout alder or coniferous wetland cover), with the fourth nest placed at the wetland–hillslope
margin approximately 30 m from the stream. Piezometers were installed at 125 cm at 1 and 6 m from the

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 0–0 (2004)
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stream in the alder site, but could only be installed in two nests in the reference site. One shallow well
(1Ð5 m depth, 7Ð6 cm ID PVC) was installed in May 1997 in a hollow of each wetland to monitor water table
elevation.

Groundwater samples for chemical characterization were collected monthly between April 1997 and April
1998, except for some mid-winter months. Water levels were measured monthly between April 1997 and
April 1998 to determine horizontal (75 cm depth) direction of groundwater flow. Piezometers were evacuated
following water level measurement, allowed to recharge and then sampled the following day using a hand-
operated vacuum pump. Channel water was sampled in duplicate in each reach. Samples were transported
from the field in ice chests and stored at 2 °C prior to analysis. Concentrations of NO3

� and Cl� were analysed
by ion chromatography (Dionex QIC-2), NH4

C by Wescan analyser, and total dissolved nitrogen (TDN; 25
and 125 cm depths) by Technicon II autoanalyser following persulphate digestion (Solorzano and Sharp, 1980;
Ameel et al., 1993). Dissolved organic nitrogen (DON) was calculated by subtracting the sum of NO3

� and
NH4

C (dissolved inorganic nitrogen, DIN) from TDN.

Statistical analysis

Whole-site comparisons used means of all piezometers of a given depth between 1 and 11 m from the
stream �n D 9�. Piezometers at the hillslope margin, where alder did not occur, were not included in whole-
site comparisons. Water chemistry data were log-transformed because of variance heterogeneity, and subjected
to analysis of variance and t tests to detect site or depth differences by sample date �˛ D 0Ð05� for all months.

Site differences in inorganic nitrogen gradients from the hillslope boundary to the stream were compared
in April 1997 (snowmelt), June 1997 (beginning of growing season), November 1997 (pre-snowpack dormant
season), and January 1998 (winter thaw), using an analysis of response curves approach for repeated measures
(Meredith and Stehman, 1991) in space. Dates were selected to correspond to periods of peak nitrogen
export in channel water (McHalež et al., 2002), to periods of high nitrogen demand within wetlands, and to

AQ1

dormant periods prior to nitrogen inputs from snowpack. The response curves repeated analysis is appropriate
due to the non-randomized piezometer locations within transects, and because nitrogen gradients could
be represented by linear (B) or quadratic (Q) polynomials. Two coefficients for polynomials of unequally
spaced samples were constructed following Robson (1959): Bij D �11yij1 � 6yij6 � yij11 C 18yij30, and
Qij D 98Ð3yij1 � 31Ð2yij6 � 110Ð6yij11 C 43Ð5yij30, where i indicates site, j indicates replication (experimental
unit within site) and 1, 6, 11 and 30 represent the distance in metres from the stream. Analysis of B examines
the site by linear distance interaction and the linear distance main effect, and analysis of Q examines the site
by quadratic distance interaction and the quadratic distance main effect. Mean and cubic polynomials could
be constructed for orthogonality. However, only linear and quadratic polynomials were used in the analysis,
because cubic patterns were not observed, and differences in site means were tested previously. In January,
only distances 1, 11, and 30 could be sampled, and coefficients for Q and B were calculated accordingly
(Robson, 1959). All statistical analyses were conducted with SAS version 6Ð12 (SAS Institute, 1996).

Estimation of channel water and deep groundwater contributions to shallow groundwater

The influence of channel water on riparian DIN in the beaver-flooded alder wetland was estimated from
the fractions of channel water and deep groundwater in shallow groundwater, then correlating the channel
water fraction with NO3

� and NH4
C concentrations. A two-component mixing model (Sklash and Farvolden,

1979) utilizing Cl� as a hydrologic tracer was used to estimate the percentage channel water in groundwater
(Hill and Lymburner, 1998) at 25 and 75 cm depths, where

Channel Water Fraction
Qc

Qsg
D Csg � Cg

Cc � Cg

and Csg is the Cl� concentration of shallow groundwater, Cg is the Cl� concentration of groundwater at
125 cm, and Cc is the Cl� concentration of channel water. Cl� has been used as a conservative tracer to

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 0–0 (2004)
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estimate ground and soil water fractions of streamflow in a similar Adirondack wetland, but such use was
limited by changing concentration in near-stream soils during storms (McHale et al.,ž 2002). This model

AQ2

assumes only two sources to shallow groundwater (channel water and deep groundwater) and, therefore, is
limited under conditions of snowmelt or substantial precipitation. Nevertheless, typical groundwater discharge
patterns in riparian wetlands, visible flow of channel water through the alder wetland, and shallow groundwater
Cl� concentrations that exceeded 1–3 µmol l�1 typical of rain or snow (NADP/NTN, 1999) suggest that
this assumption was generally met. Shallow groundwater at the base of the hillslope was very similar in
Cl� concentration to 125 cm groundwater, and so was considered to be the same water source. If shallow
groundwater Cl� concentrations were slightly outside the range of end-member concentrations, estimates
were rounded to 0 or 100%. Estimates of percentage channel water were then used with piezometric data to
interpret potential hydrologic effects on nitrogen solutes.

RESULTS

Channel water seasonal patterns in nitrogen concentration

NO3
� was consistently greater in the alder reach, with the greatest difference during spring snowmelt in

1997 (Figure 2). Peak NO3
� concentrations in 1998 occurred in a January thaw (Figure 2c), with greater

NO3
� in the alder reach (Figure 2a). Ammonium concentrations were �5 µmol l�1 throughout the year in

both reaches. Concentrations of DON increased through the growing season in both reaches (Figure 2b).
Hence, when DIN concentrations decreased in summer, as much as 60% of TDN was DON.

Groundwater levels and flow

Groundwater levels in the wetland hollows varied between �10 and C7 cm of the surface in the alder
wetland and between �15 and C10 cm of the wetland surface in the upstream coniferous wetland between
May 1997 and May 1998. The hollows of the alder wetland remained more saturated during the dormant
season, following increased flooding by beaver in summer 1997 (Figure 3a).

Ground elevation in both wetlands decreased approximately 15 cm between hillslope and stream. Although
we did not characterize the underlying substrate, approximate horizontal flow patterns were inferred from
piezometric surfaces at 75 cm (Figure 4). A beaver dam at the downstream end of the alder reach resulted in
visible loss of channel water to this wetland across seasons, and an elevated water table (Figure 3a).

Seasonal trends in riparian groundwater nitrogen

25 cm depth. NO3
� concentrations at 25 cm were 30 µmol l�1 greater in the alder reach during spring

snowmelt in 1997 (Figure 3b). NO3
� concentrations remained greatest at this shallow depth in the alder

reach until a melt event in January 1998, and were statistically greater in the alder wetland in May,
August, September, and November 1997 (Figure 3b), despite a higher water table (Figure 3a). Ammonium
concentrations increased in both wetlands at 25 cm following snowmelt of 1997, until falling to low levels
during the January thaw (Figure 2a). Ammonium concentrations were significantly greater in the reference
wetland than in the alder reach in September 1997.

DON in shallow groundwater increased to nearly 100 µmol l�1 from 10 µmol l�1 in the alder stand during
the growing season, then decreased gradually until after the January melt of 1998 (Figures 3c and 2c). DON
comprised 27% of TDN in May 1997, and 71% in July. This fraction gradually decreased in the alder wetland
until the Januaryž thaw, when DON was only 14% of TDN, then it began to increase again until spring

AQ4

(Figure 3c). DON in the reference wetland remained lower, but followed similar seasonal trends (Figure 3c).
During the entire sampling period, Cl� concentrations at this depth did not differ (Figure 3c) in the two
wetlands.

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 0–0 (2004)
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Figure 2. Nitrogen and chloride concentrations in channel water of alder and reference reaches. Values are means of duplicate samples:
(a) NO3

� and NH4
C; (b) DON and chloride; (c) runoff, measured at the adjacent Arbutus Inlet catchment (Mitchell et al., 2001ž)

AQ3

75 cm depth. Significantly greater NO3
� concentrations occurred in the alder reach at 75 cm in September

1997, with the highest concentrations observed in both wetlands during the January 1998 snowmelt (Figure 5a).
Ammonium was the dominant form of DIN at this depth; it peaked in autumn at both sites, then was depleted
from or diluted in groundwater through the remainder of the dormant season (Figure 5a).

125 cm depth. NO3
� concentrations in shallow till or alluvium of the alder reach were low ��10 µmol l�1�

in April 1997, the period of greatest NO3
� concentrations in shallow horizons. Peaks at this depth did occur

in September 1997 and in Januaryž during the early melt (Figure 5b).
AQ5

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 0–0 (2004)
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Figure 3. Water table depth above ground surface and solute concentrations in groundwater of alder and reference reaches, 25 cm depth.
Solute values are concentration means between 1 and 11 m from the stream (n D 9): (a) Water table depth; (b) NH4

C and NO3
�; (c) DON

and chloride

Ammonium concentration at this depth increased through the growing season in the alder wetland, peaked
in August, then steadily declined through the dormant season (Figure 5b). This did not occur in the reference
wetland, where NH4

C remained �10 µmol l�1.
DON at the alder site was significantly less at 125 cm than at 25 cm between June 1997 and April

1998, except for November and January, and increased from 14 µmol l�1 in April 1997 (38% of TDN) to
38 µmol l�1 (57% of TDN) in July 1997. Concentrations of DON then rapidly decreased as DIN concentrations
increased in late summer. DON also increased in the reference site, from 11 µmol l�1 (41% of TDN) in April
1997 to 27 µmol l�1 (69% of TDN) in August 1997.

Spatial gradients in riparian groundwater nitrogen

April: late snow melt. In April 1997, the greatest DIN concentrations, dominated by NH4
C, occurred close

to the stream at 75 cm in the alder site (Figure 6a). DIN at 25 cm did not vary widely across the alder reach,
and was dominated by NO3

� (Figure 6a and b).

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 0–0 (2004)
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Figure 4. Groundwater flow in alder and reference reaches. Elevations of piezometric surfaces are for 75 cm depth piezometers, relative to
an arbitrary datum of 3Ð05 m: (a) June 1997, alder; (b) June, 1997, reference; (c) November 1997, alder; (d) November 1997, reference

Estimated channel water contribution to groundwater at 75 cm in the alder site was 21% at 1 m, 40% at
6 m, 16% at 11 m, and 0% at the hillslope margin. Groundwater Cl� concentrations did not vary widely by
site or distance from stream at 25 cm (Figure 6c), and suggest source water fractions of 50–76% channel
water in the alder wetland at this shallow depth. Loss of channel water behind the debris dam occurred in the
alder reach during this month of high flow.

June 1997: early growing season. In June 1997, no significant differences in nitrogen gradients were detected
between sites (B or Q), with DIN showing a general increase between the hillslope and stream. At 25 cm,
near-stream DIN at the alder site was dominated by NO3

�, and a significant increase between hillslope and
stream occurred for NO3

� at the alder site �p D 0Ð03� and DIN at both sites (alder p D 0Ð02; reference
p D 0Ð04) (Figure 7a and b).

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 0–0 (2004)
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Figure 5. Solute concentrations in groundwater of alder and reference reaches. Values are concentration means between 1 and 11 m from
the stream (n D 9): (a) NO3

� and NH4
C at 75 cm depth; (b) NO2

� and NH4
C at 125 cm depth

Figure 7c shows the Cl� concentrations of shallow groundwater. Water at 25 cm depth at the alder site in
June was an estimated 100% groundwater at the hillslope boundary, but 87–100% surface water between 1
and 12 m from the stream. In contrast, near-stream groundwater at 75 cm was estimated to be 0–30% channel
water. Horizontal groundwater flow at 75 cm in June 1997 was dominated by flow toward the stream, except
near the debris dam in the alder reach (Figure 4a and b).

November: dormant season prior to snow cover. In November 1997, DIN at 75 cm was greatest
�129 µmol l�1� at the alder site next to the stream, dominated by NH4

C (Figure 8a). A significant gradi-
ent in NH4

C occurred between hillslope and stream (B, p D 0Ð01; Q, p � 0Ð01ž) at the alder site only,
AQ6

causing a significant linear (B, p D 0Ð04) and quadratic (Q, p D 0Ð01) distance by site interaction.
Concentrations of DIN at 25 cm between hillslope and stream varied between 30 and 50 µmol l�1 for the

alder reach and between 30 and 144 µmol l�1 at the reference reach due to the high NH4
C concentrations.

The greatest NO3
� concentrations, 22 µmol l�1 (Figure 8b) occurred at the alder site close to the stream.

Groundwater Cl� concentrations were similar between sites and depths, except at 25 cm in the alder
reach where channel water diluted Cl� (Figure 8c). Estimated channel water contribution to groundwater at
25 cm was 100% at 1 m, 55% at 6 m, 86% at 11 m, and 0% at the hillslope margin. NO3

� was correlated
positively, and NH4

C negatively, with percentage channel water at 25 cm (Figure 9). Estimated channel water

Copyright  2004 John Wiley & Sons, Ltd. Hydrol. Process. 18, 0–0 (2004)
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Figure 6. Spatial patterns of groundwater solutes across alder and reference reaches at 25 and 75 cm depths, April 1997: (a) DON
(NO3

� C NH4
C); (b) NO3

�; (c) chloride. Values are mean plus/minus standard error

contribution to groundwater at 75 cm was 33% at 1 m, 55% at 6 m, 80% at 11 m and 29% at the base of
the hillslope. Groundwater flow patterns in the alder reach in November 1997 showed channel water loss to
shallow groundwater just upstream of the debris dam, and mixing with discharging and hillslope groundwater
10–15 m from the stream (Figure 4c).

January 1998: mid-winter thaw. The greatest concentrations of NO3
� in groundwater �60 µmol l�1�

occurred immediately next to the stream in January 1998 at 75 cm, where NO3
� and NH4

C were elevated
similarly (Figure 10a). A significant quadratic distance by site interaction occurred at 75 cm for NH4

C (Q,
p D 0Ð04), and a significant linear distance by site interaction occurred at this depth for DIN (B, p D 0Ð05).
Slopes of these gradients differed from zero for NH4

C (Q, p D 0Ð02), DIN (B, p D 0Ð03), and NO3
� (B,

p D 0Ð06) at the alder site only.
NO3

� and NH4
C did not differ between sites at 25 cm (Figure 10b). At the alder site, NO3

� at 25 cm was
positively correlated with percentage channel water �r2 D 0Ð95�, whereas greatest NO3

� and NH4
C at 75 cm

occurred close to the stream with 0% channel water.
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Figure 7. Spatial patterns of groundwater solutes across alder and reference reaches, June 1997: (a) NO3
� and NH4

C at 25 cm depth;
(b) DON (NO3

� C NH4
C) at 25 and 75 cm depths; (c) chloride at 25 and 75 cm depths. Values are mean plus/minus standard error

Groundwater Cl� concentrations at 25 cm within the alder reach decreased strongly between the hillslope
and stream (Figure 10c). Estimated channel water contribution to groundwater at 75 cm was 0% at 1 m from
the stream, 14% at 11 m, and 2% at the hillslope margin. Estimated channel water contribution to groundwater
at 25 cm was 100% at 1 m, 37% at 11 m, and 0% at the hillslope margin.

DISCUSSION

Channel water seasonal patterns in nitrogen concentration

NO3
� concentration of channel water was consistently elevated in the alder reach (Figure 2a). Site

differences in channel water NO3
� were greatest during April 1997, and peak NO3

� concentrations in
1998 occurred in a January thaw. Both peaks corresponded with melt-induced discharge (Figure 2), and
thus with peak NO3

� exports. Peak NO3
� in summer (Figure 2a) occurred at the alder site during the
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Figure 8. Spatial patterns of groundwater solutes across alder and reference reaches, November 1997: (a) NO3
� and NH4

C at 75 cm depth;
(b) NO3

� at 25 cm depth; (c) chloride at 25 and 75 cm depths. Values are mean plus/minus standard error

onset of an August rain event (33 mm), following peaks in 25 cm groundwater NO3
� in June (Figure 3b).

Elevated NO3
� in shallow peat of the alder wetland prior to an event-induced increase in channel water

NO3
� suggests that nitrification during periods of low water table (Figure 3a) may have contributed to an

NO3
� flush in the ensuing event (Creed et al., 1996). Voigt and Steucek (1969) concluded that speckled alder

contributes NO3
� to surface water based on a small sample of channel water above (5 µmol l�1) and below

(8 µmol l�1) alders in Connecticut, USA. Goldman (1961) measured greater NO3
� in spring water with A.

incana ssp. tenuifolia (5 µmol l�1) than without (0Ð5 µmol l�1), between June and October, at Castle Lake
California, USA. Photosynthetic activity within the lake was also greater on the side of the lake with alder
springs, indicating that alder-fixed nitrogen alleviated nitrogen limitation of aquatic organisms (Goldman,
1961). It is possible that till-derived NO3

� contributed to the differences in NO3
� in channel water in the

present study, flowing via steep drainage patterns in the watershed and entering the stream between the
two study reaches. However, we found relatively low NO3

� concentrations in shallow (125 cm) near-stream
substrate.
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Figure 9. Linear relationships between channel water fraction in groundwater and NO3
� and NH4

C concentration in groundwater at 25 cm
depth, November 1997

As much as 60% of TDN in channel water during summer was DON; this shows the importance of seasonal
nitrogen loss as DON in watersheds that are influenced by nitrogen deposition, as well as in undisturbed
watersheds (Hedin et al., 1995). However, DON concentration did not differ in the two reaches throughout
the sampling period.

Seasonal trends in groundwater nitrogen

25 cm depth. Elevated NO3
� in the alder wetland and similar Cl� concentrations in the two wetlands indicate

that a common source of water was enriched in NO3
� in the alder reach. Estimated channel water fractions of

50–76% and the loss of water from the stream in April 1997 suggest that channel water contributed to elevated
NO3

� in shallow peat of the alder wetland. Oxidized channel water could have been a direct NO3
� source,

or an O2 source to nitrifying organisms, as soil-derived NO3
� may dominate NO3

� leaching in melt events
in the region (Rascher et al., 1987; Kendall, 1998). Nitrate in the alder reach at 25 cm remained elevated
relative to the reference after channel water concentrations had decreased and biotic uptake had commenced,
suggesting net NO3

� production, concurrent with increasing DON concentrations (Figure 3).
Inorganic nitrogen accumulated as NH4

C in the rooting zone of both wetlands during the growing season
(Figure 3b). Summer peaks in DON in shallow groundwater were approximately two times greater at 25 cm
than at 125 cm, and preceded or coincided with peak DIN concentrations. These patterns suggest that this
DON was wetland derived and was later transformed to NH4

C or NO3
�.

75 cm depth. High NH4
C concentrations at 75 cm in both wetlands may have resulted from ammonification

of organic nitrogen through the summer and early autumn, or non-assimilatory reduction of NO3
� (Hill, 1996)

advected from the channel. The latter mechanism seems less likely, because NH4
C accumulated in the reference

wetland, where hydrologic gradients were directed toward the channel. Minimum NH4
C concentrations at

depth occurred in March or April in both years, corresponding to peaks in channel water NO3
�. Nitrate at

25 and 75 cm increased during the winter declines in NH4
C, suggesting that NH4

C was nitrified and then
flushed from the peat. NO3

� flushing is hypothesized to occur after nitrification is facilitated by a lowered
water table, and NO3

� is flushed into the stream as the water table rises through the unsaturated zone in
ensuing rain or melt events (Creed et al., 1996; Cirmo and McDonnell, 1997). This mechanism seems likely
for these systems, because more NO3

� is present during autumn in dense alder stands than in other wetlands
(Kiernanž et al., 2002), and because the riparian zone floods substantially during winter (Figure 3a).

AQ7
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Figure 10. Spatial patterns of groundwater solutes across alder and reference reaches, January 1998: (a) NO3
� and NH4

C at 75 cm depth;
(b) NO3

� and NH4
C at 25 cm depth; (c) chloride at 25 and 75 cm depths. Values are mean plus/minus standard error

125 cm depth. NO3
� concentrations at 125 cm in the alder stand were �10 µmol l�1 in April 1997, the

period of greatest NO3
� concentrations in shallow horizons. These data indicate that groundwater in shallow

mineral substrate was not a source of NO3
� during peak NO3

� discharge in April 1997.

Spatial gradients in riparian groundwater nitrogen

In April 1997, DIN dominated by NH4
C was elevated close to the stream at 75 cm in the alder reach

(Figure 6a). Both piezometric and Cl� data showed channel water influx to the alder wetland. Whether near-
stream nitrogen at 75 cm was derived from channel water or ammonification is uncertain. NO3

� dominating
the DIN at 25 cm in the alder reach (Figure 6b) may have been derived from the stream, or from nitrification
within or above the reach, as channel water contributed strongly to shallow groundwater. It is not likely that
this NO3

� was directly from meltwater, as low NO3
� concentrations occurred in the reference wetland where

melt was still occurring, and Cl� concentrations suggested strong channel water source to shallow soils.
In June 1997, water at 25 cm depth at the alder site was an estimated 100% groundwater at the hillslope

boundary, but was 87–100% channel water between 1 and 11 m from the stream. NO3
� concentrations
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at 25 cm depth 1–11 m from the stream were two or more times that of 125 cm groundwater or channel
water (Figures 2a, 5a, and 7a), suggesting that near-stream nitrification rates were elevated during a period
of low water table (Figure 3a), and that denitrification and biotic uptake were low. Triska et al. (1993)
found a low denitrification potential and a high nitrification potential of near-channel sediment slurries,
each attributable to high O2 supply from advected channel water. Denitrification potential further from the
channel, where exchange flow was unimportant, was limited by NO3

� (Triska et al., 1993). NO3
� limitation

of denitrification also occurred in a permanently saturated A. glutinosa swamp (Westermann and žKiær
AQ8

Ahring 1987). Hedin et al. (1998) found denitrification limited by dissolved organic carbon (DOC) in riparian
sediments in Michigan, USA. Supply of DOC and associated organic acids in some Adirondack surface waters
is positively correlated with percentage of watershed as wetland (Driscoll et al., 1998), and so DOC may not
limit wetland denitrification in these systems. Modeled DIN output from the same watersheds is negatively
correlated with % wetland area, implicating broad classes of wetlands as DIN sinks (Driscoll et al., 1998). In a
broad survey of temperate fens and bogs, alder-dominated fens demonstrated the highest rates of denitrification
(Aerts et al., 1999), but denitrification rates and limits are expected to vary in wetlands of different flooding
regimes (Gold et al., 1998).

In November, NO3
� at 25 cm increased to 22 µmol l�1 close to the stream at the alder site (Figure 8b).

The positive correlation between NO3
� and the percentage channel water (Figure 9), and the hydrologic

flow lines (Figure 4c) suggest that NO3
� at this shallow depth was stream derived. However, NH4

C reached
129 µmol l�1 at 75 cm next to the stream in the alder reach, and may have been substrate for nitrification at the
redoxcline between these two depths (Triska et al., 1989; Cirmo and McDonnell, 1997). Lack of correlation
of NH4

C at 75 cm with percentage channel water (r2 D 0Ð23) shows little channel water influence on the
elevated NH4

C concentrations.
The greatest NO3

� concentrations at 75 cm (60 µmol l�1) occurred in the alder reach within 1 m from
the stream in January 1998 (Figure 10a). NO3

� concentrations of channel water (Figure 2a) and 125 cm
groundwater (Figure 5b) were less, indicating that the hyporheic zone is a source for NO3

�. This pattern fits
the conceptual model of Triska et al. (1989), where the interactive hyporheic zone hosts nitrification stimulated
by groundwater-derived NH4

C and stream-derived O2, and demonstrates higher NO3
� concentration than either

channel water or groundwater. Moreover, NO3
� was not derived from horizontally flowing groundwater at

this depth, because of low DIN further from the stream (Figure 10a). Slopes of NH4
C and DIN increased

between hillslope and stream at the alder site only, and percentage channel water at 75 cm was low across
the wetland (0–14%), indicating that the alder wetland was a source of DIN to ground and stream water.
Mean NO3

� concentrations at 25 cm varied little between sites or with distance from the stream (Figure 10b),
indicating a similar meltwater influence on shallow NO3

� in both wetlands.

CONCLUSIONS

Subsurface DIN concentrations were consistently greatest in the alder wetland, close to the stream, and
NO3

� concentrations in channel water were greater in the alder reach than in the upstream reference reach,
particularly during peaks in stream water discharge and NO3

� concentration. These patterns suggest that
alder shrub wetlands do not decrease nitrogen in groundwater flowing between hillslopes and streams, but
may even increase nitrogen solutes in riparian ground and surface waters. Groundwater in shallow till or
alluvium (125 cm) had low NO3

� concentrations relative to shallower groundwater in the alder reach. These
results suggest that nitrification is stimulated in shallow peat in the presence of alders and oxidized exchange
flow, and that the NO3

� produced is transported to the channel. Ammonium and DON concentrations increased
through the growing season in both wetlands, then decreased through the dormant season, suggesting that
riparian groundwater is an important transient nitrogen pool regardless of cover type. The wetlands in this study
were classified by dominant wetland cover labels in the region, forested conifer (FO4) and alder-dominated
SS1 (Roy et al., 1996), and differed in pattern, and likely in source and processing of nitrogen solutes. To
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understand better the role of riparian wetlands in mediating nitrogen concentrations in streams, future studies
should examine the specific fate of nitrogen fixed within alder shrub wetlands, as well as of hillslope-derived
nitrogen that is discharged into these naturally nitrogen-rich wetlands, prior to entering surface waters.
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