1. Find a point on the surface \(x^2 + 3y^2 + 2z^2 = 31 \) where the vector \(\mathbf{n} = \langle 1, 2, 4 \rangle \) is normal to the surface.

 Solution. For \(f(x, y, z) = x^2 + 3y^2 + 2z^2 \), the gradient \(\nabla f = \langle 2x, 6y, 4z \rangle \) is normal to the level surface \(f(x, y, z) = 31 \) at every point on the surface. Thus, we want \(\nabla f \) to be in the same direction of \(\mathbf{n} = \langle 1, 2, 4 \rangle \) at a point. Condition (a) means that we want \(\langle 2x, 6y, 4z \rangle = k\langle 1, 2, 4 \rangle \) and condition (b) means we want \(x^2 + 3y^2 + 2z^2 = 31 \). Combining these gives us \(k(2/3)^2 + 3(k/3)^2 + 2(k)^2 = 31 \), which is easy to solve as \(k = \pm \sqrt{12} \). Hence, the point \((\sqrt{12}/2, \sqrt{12}/3, \sqrt{12}) \) will be on the surface and have the gradient in the direction of \(\mathbf{n} \).

2. Find a formula for the unit normal vector \(\mathbf{N}(t) \) for an object moving in a circle with radius 50m with constant speed 3 m/sec.

 Solution. The parametric curve \(\mathbf{r}(t) = \langle 50 \cos (3t/50), 50 \sin (3t/50) \rangle \) describes this kind of motion. In this case, \(\mathbf{r}'(t) = \langle -3 \sin (3t/50), 3 \cos (3t/50) \rangle \), which means that \(\| \mathbf{r}'(t) \| = 3 \), and so

 \[
 \mathbf{T}(t) = \langle -\sin (3t/50), \cos (3t/50) \rangle
 \]

 From here we find \(\mathbf{T}'(t) = \langle -3/50 \cos (3t/50), -3/50 \sin (3t/50) \rangle \), which means that \(\| \mathbf{T}'(t) \| = 3/50 \), and so

 \[
 \mathbf{N}(t) = \langle -\cos (3t/50), -\sin (3t/50) \rangle
 \]

3. A bug is located at the point \((-2, 4)\) on a hot plate that has temperature \(T(x, y) = 100e^{-(x^2+y^2)/1000} \) degrees \(C \) at any point \((x, y)\) measured in inches. The bug begins walking in a straight line toward the point \((2, 1)\) at a constant rate of 1 inch per second. At what rate is the bug’s temperature changing (in degrees per second) when the bug is at the point \((2, 1)\)?

 Solution. The motion of the bug can be parameterized as \(\mathbf{r}(t) = \langle -2 + 4t, 4 - 3t \rangle \) for \(0 \leq t \leq 1 \), but this would have the bug traveling 5 inches in one second, so we use a unit vector for our direction vector instead and use the parameterization \(\mathbf{c}(t) = \langle -2 + \frac{4}{5}t, 4 - \frac{3}{5}t \rangle \) for \(0 \leq t \leq 5 \). So

 \[
 \frac{\mathbf{d}}{dt} \left(\mathbf{T}(\mathbf{c}(t)) \right) = \nabla T(\mathbf{c}(t)) \cdot \mathbf{c}'(t)
 \]

 \[
 = \langle -\frac{x}{5} e^{-(x^2+y^2)/1000}, -\frac{y}{5} e^{-(x^2+y^2)/1000} \rangle \cdot \langle \frac{4}{5}, -\frac{3}{5} \rangle
 \]

 At \(t = 5 \) the bug is at the point \((2, 1)\) and this becomes

 \[
 \langle -\frac{2}{5} e^{-5/1000}, -\frac{1}{5} e^{-5/1000} \rangle \cdot \langle \frac{4}{5}, -\frac{3}{5} \rangle = -\frac{1}{5} e^{-5/1000} \approx -0.199 \text{ degrees per second.}
 \]

4. Use a linear approximation of the function \(f(x, y) = \frac{x^3}{\sqrt{y}} \) at the point \((2, 4)\) to give a paper-and-pencil estimate of the value of \(\frac{(2.05)^3}{\sqrt{4.1}} \).

 Solution. The linear approximation at the point \((2, 4)\) is given by

 \[
 L(x, y) = f(2, 4) + f_x(2, 4)(x-2) + f_y(2, 4)(y-4)
 \]

 Since \(f_x(x, y) = 3x^2y^{-1/2} \) and \(f_y(x, y) = -1/2x^3y^{-3/2} \), we have \(f_x(2, 4) = 6 \) and \(f_y(2, 4) = -\frac{1}{2} \), so the linear approximation is

 \[
 L(x, y) = 4 + 6(x-2) - \frac{1}{2}(y-4)
 \]

 Hence, \(f(2.05, 4.1) \approx L(2.05, 4.1) = 4 + 6(0.05) - \frac{1}{2}(0.1) = 4.25 \).
5. Demonstrate that the function \(u(x, y) = e^x \sin y \) satisfies Laplace equation \(u_{xx} + u_{yy} = 0 \).

Solution. Let \(u(x, y) = e^x \sin y \). Then \(u_x(x, y) = e^x \sin y \), and so \(u_{xx}(x, y) = e^x \sin y \). Also \(u(x, y) = e^x \cos y \), and so \(u_{yy}(x, y) = -e^x \sin y \). Therefore,

\[
 u_{xx} + u_{yy} = e^x \sin y + (-e^x \sin y) = 0
\]