Figure 1: A point P lies on \mathcal{P} if $\overrightarrow{P_0P} \perp \mathbf{n}$.
FIGURE 2 The plane with normal vector $\mathbf{n} = \langle 0, 0, 3 \rangle$ passing through $P_0 = (1, 2, 0)$ is the xy-plane.
THEOREM 1 Equation of a Plane

Plane through $P_0 = (x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$:

Vector form:

$$\mathbf{n} \cdot \langle x, y, z \rangle = d$$

Scalar forms:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz = d$$

where $d = \mathbf{n} \cdot \langle x_0, y_0, z_0 \rangle = ax_0 + by_0 + cz_0$.

Example. Show that any two points P and Q on the plane $6x - 3y + 2z = 12$, the vector \overrightarrow{PQ} is perpendicular to the vector $\langle 6, -3, 2 \rangle$.
Parallel planes

FIGURE 4 Parallel planes with normal vector \(\mathbf{n} = \langle 7, -4, 2 \rangle \).
Example. Find the equation of the plane determined by the three points $(5, 1, 1)$, $(1, 1, 2)$, and $(2, 1, 1)$.

Example. Find the equation of the plane determined by the three points $(5, 1, 1)$, $(1, 1, 2)$, and $(2, 1, 1)$.

Figure 5 Three points P, Q, and R determine a plane (assuming they do not lie in a straight line).
Trace of a plane

Figure 6 The three blue lines are the traces of the plane \(-2x + 3y + z = 6\) in the coordinate planes.