Calculus III: Section 14.8

Professor Ensley

Ship Math

October 26, 2011
FIGURE 1 Optimization with a constraint: find the minimum of \(f(x, y) = \sqrt{x^2 + y^2} \) on the line \(x + y = 4 \).
(A) The gradient vector ∇f_Q shows that f increases as we move to the right along the constraint curve.

(B) The local maximum of f on the constraint curve $g(x, y) = 0$ occurs at a point P where ∇f_P and ∇g_P point in the same direction.

FIGURE 2
THEOREM 1 Lagrange Multipliers Assume that $f(x, y)$ and $g(x, y)$ are differentiable functions. If $f(x, y)$ has a local minimum or maximum on the constraint curve $g(x, y) = 0$ at $P = (a, b)$, and if $\nabla g_P \neq 0$, then there is a scalar λ such that

$$\nabla f_P = \lambda \nabla g_P$$

Proof Let $c(t)$ be a parametrization of the constraint curve $g(x, y) = 0$ near P such that $c(0) = P$ and (a, b) and $c'(0) \neq 0$. Then $f(c(0)) = f(P)$, and $f(c(t))$ has a local minimum or maximum at $t = 0$. Thus, $t = 0$ is a critical point of $f(c(t))$ and

$$\left. \frac{d}{dt} f(c(t)) \right|_{t=0} = \nabla f_P \cdot c'(0) = 0$$

Chain Rule

This shows that ∇f_P is orthogonal to the tangent vector $c'(0)$ to the curve $g(x, y) = 0$. The gradient ∇g_P is also orthogonal to $c'(0)$ since ∇g_P is orthogonal to the level curve $g(x, y) = 0$ at P. We conclude that ∇f_P and ∇g_P are proportional as claimed.
FIGURE 3 The minimum and maximum occur where the level curve of $f(x, y) = x + 2y$ is tangent to the constraint curve $3x^2 + 4y^2 = 3$.
Examples

Figure 5 Contour plot of the Cobb–Douglas production function $P(x, y) = 50x^{0.4}y^{0.6}$.
\textbf{FIGURE 6} Point P closest to the origin on the plane.