Line Integrals

Partition of \(C \) into \(N \) small arcs

Choice of sample points \(P_i \) in each arc

FIGURE 1 The curve \(C \) divided into \(N \) small arcs.

\[P_i = \mathbf{c}(t_i^*) \]

FIGURE 2 Partition of parametrized curve \(\mathbf{c}(t) \).
THEOREM 1 **Computing a Scalar Line Integral** Let \(c(t) \) be a parametrization of a curve \(C \) for \(a \leq t \leq b \). Assume that \(f(x, y, z) \) and \(c'(t) \) are continuous. Then

\[
\int_C f(x, y, z) \, ds = \int_a^b f(c(t)) \|c'(t)\| \, dt
\]

The value of the integral on the right does not depend on the choice of parametrization. For \(f(x, y, z) = 1 \), we obtain the length of \(C \):

\[
\text{Length of } C = \int_C \|c'(t)\| \, dt
\]
Example 1-ish. Find $\int_C (xy + z^2) \, ds$, where C is the helix $\mathbf{c}(t) = \langle \cos t, \sin t, t \rangle$ with $0 \leq t \leq 2\pi$.

FIGURE 3 The helix $\mathbf{c}(t) = (\cos t, \sin t, t)$.
Example 2. Find the total mass of a wire in the shape of the parabola $y = x^2$ for $1 \leq x \leq 4$ if the mass density at any point (x, y) is given by $\rho(x, y) = \frac{y}{x}$ grams per centimeter.
Line Integrals

Oriented path from P to Q

FIGURE 5 An oriented curve is a curve with a specified direction.

A closed oriented path
DEFINITION Vector Line Integral Let C be an oriented curve and let T denote the unit tangent vector pointing in the forward direction along C. The line integral of a vector field \mathbf{F} along C is the integral of the tangential component of \mathbf{F}:

$$\int_C \mathbf{F} \cdot ds = \int_C (\mathbf{F} \cdot T) \, ds$$
Figure 6 The line integral is the integral of the tangential component of \mathbf{F} along \mathcal{C}.

$\mathbf{F} \cdot \mathbf{T}$ is the length of the projection of \mathbf{F} along \mathbf{T}.

$\mathbf{c}(a)$

$\mathbf{c}(b)$
Theorem 2 Computing a Vector Line Integral
Let \(\mathbf{c}(t) \) be a regular parametrization of an oriented curve \(C \) for \(a \leq t \leq b \). The line integral of a vector field \(\mathbf{F} \) over a curve \(C \) is equal to

\[
\int_C \mathbf{F} \cdot d\mathbf{s} = \int_a^b \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) \, dt
\]

Exercise #8. Let \(\mathbf{F} = \langle xy, 2, z^3 \rangle \), and evaluate \(\int_C \mathbf{F} \cdot d\mathbf{s} \), where \(C \) is parameterized by \(\mathbf{c}(t) = \langle \cos t, \sin t, t \rangle \) for \(0 \leq t \leq \pi \).
The dot product $\mathbf{T} \cdot \mathbf{F}$ is negative because the angle between the vectors is obtuse.

Here, the dot product $\mathbf{T} \cdot \mathbf{F}$ is positive because the angle between the vectors is acute.

(A) Line integral is negative

(B) Line integral is positive

(C) Total line integral is negative

FIGURE 7 The vector field $\mathbf{F} = \langle 2y, -3 \rangle$.

Professor Ensley (Ship Math)
Exercise #13

(A)

(B)

(C)
Exercise #14

(A)

(B)

(C)
Figure 8: The path from P to Q has two possible orientations.
THEOREM 3 Properties of Line Integrals

Let C be a smooth oriented curve and let \mathbf{F} and \mathbf{G} be vector fields.

(i) Linearity: $\int_C (\mathbf{F} + \mathbf{G}) \cdot ds = \int_C \mathbf{F} \cdot ds + \int_C \mathbf{G} \cdot ds$

$\int_C k\mathbf{F} \cdot ds = k \int_C \mathbf{F} \cdot ds$ (for k a constant)

(ii) Reversing orientation: $\int_{-C} \mathbf{F} \cdot ds = -\int_C \mathbf{F} \cdot ds$

(iii) Additivity: If C is a union of n smooth curves $C_1 + \cdots + C_n$, then

$\int_C \mathbf{F} \cdot ds = \int_{C_1} \mathbf{F} \cdot ds + \cdots + \int_{C_n} \mathbf{F} \cdot ds$
Example

Exercise #41. Let \(\mathbf{F} = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \right) \), the vortex vector field. Calculate \(\int_C \mathbf{F} \cdot d\mathbf{s} \), where \(C \) is a circle of radius 2 centered at the origin oriented counterclockwise. (Before you do the calculation, do you predict the answer will be positive, negative, or zero?)
Exercise #49. Calculate the work done by the force field \(\mathbf{F} = \langle x, y, z \rangle \) along the helix path \(\mathbf{c}(t) = \langle \cos t, \sin t, t \rangle \) for \(0 \leq t \leq 3\pi \).