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Axiomatic Systems 
An axiomatic system is a list of undefined terms together with a list of statements (called “axioms”) that 

are presupposed to be “true.”  A theorem is any statement that can be proven using logical deduction 

from the axioms. 

Examples 
Here are some examples of axiomatic systems. 

 Committees 

Undefined terms: committee, member 

Axiom 1: Each committee is a set of three members. 

Axiom 2: Each member is on exactly two committees. 

Axiom 3: No two members may be together on more than one committee. 

Axiom 4: There is at least one committee. 

 Monoid 

Undefined terms: element, product of two elements 

Axiom 1: Given two elements x and y, the product of  and , denoted , is a uniquely 

defined element. 

Axiom 2: Given elements , , and , the equation  is always true. 

Axiom 3: There is an element , called the identity, such that  and  for all 

elements . 

 Silliness 

Undefined terms: silly, dilly. 

Axiom 1: Each silly is a set of exactly three dillies. 

Axiom 2: There are exactly four dillies. 

Axiom 3: Each dilly is contained in a silly. 

Axiom 4: No dilly is contained in more than one silly. 

Notice that in the second example, the axioms defined a new term (“identity”).  This isn’t an undefined 

term because the axiom includes a definition.  Also, these axioms refer to basic set theory that you 

learned in Discrete Math.  For our purposes, we will assume all of those basic set theory terms are 

known.  It is possible to view set theory itself as another axiomatic system, but that is beyond the scope 

of this course. 

Models 
A model for an axiomatic system is a way to define the undefined terms so that the axioms are true.  

Sometimes it is easy to find a model for an axiomatic system, and sometimes it is more difficult. 
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Here are some examples of models for the “monoid” system. 

 the elements are real numbers, and the product of two elements is the product of those two 

numbers 

 the elements are 2 2 matrices, and the product is the product of those two matrices 

 the elements are integers, and the “product” of two elements is actually the sum of the two 

elements (replace the * symbol with + and check that all of the axioms still work).   

We have to be careful not to assume that the axioms say things that they do not.  Even though the 

undefined term is called “product,” there is nothing in the axioms that prevents us from using addition 

to stand for that term. 

 Discussion Question: Can you think of a new axiom that would exclude addition from being the 

“product” of a monoid? 

Here is a model for the Committees system (but certainly not the only one): 

Members Alan, Beth, Chris, Dave, Elena, Fred 

Committees 

{Alan, Beth, Chris} 

{Alan, Dave, Elena} 

{Beth, Dave, Fred} 

{Chris, Elena, Fred} 

We have defined the undefined terms, and now we have to check that the axioms are actually satisfied.  

It is easy to see that Axioms 1 and 4 are satisfied. 

Axiom 2 says “Each member is on exactly two committees.”  To check this axiom, we look at each 

member, and list the number of committees they are on.  If that number is 2 for every member, then 

the axiom is true. 

Member Committees Number = 2? 

Alan {Alan, Beth, Chris}, {Alan, Dave, Elena} yes 

Beth {Alan, Beth, Chris}, {Beth, Dave, Fred} yes 

Chris {Alan, Beth, Chris}, {Chris, Elena, Fred} yes 

Dave {Alan, Dave, Elena}, {Beth, Dave, Fred} yes 

Elena {Alan, Dave, Elena}, {Chris, Elena, Fred} yes 

Fred {Beth, Dave, Fred}, {Chris, Elena, Fred} yes 

Axiom 3 says “No two members may be together on more than one committee.”  For this axiom, we 

have to look at all 15 pairs of members and make sure that none of the pairs is on more than one 

committee.  So it is acceptable to have the pair of members be on zero committees or one committee, 

but not two or more. 
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Pair of Members Committee(s) Number ≤ 1? 

Alan & Beth {Alan, Beth, Chris} yes 

Alan & Chris {Alan, Beth, Chris} yes 

Alan & Dave {Alan, Dave, Elena} yes 

Alan & Elena {Alan, Dave, Elena} yes 

Alan & Fred none yes 

Beth & Chris {Alan, Beth, Chris} yes 

Beth & Dave {Beth, Dave, Fred} yes 

Beth & Elena none yes 

Beth & Fred {Beth, Dave, Fred} yes 

Chris & Dave none yes 

Chris & Elena {Chris, Elena, Fred} yes 

Chris & Fred {Chris, Elena, Fred} yes 

Dave & Elena {Alan, Dave, Elena} yes 

Dave & Fred {Beth, Dave, Fred} yes 

Elena & Fred {Chris, Elena, Fred} yes 

Independence 
An axiom is called independent if it cannot be proven from the other axioms.  In other words, the axiom 

“needs” to be there, since you can’t get it as a theorem if you leave it out.  How do you prove that 

something can’t be proved?  This relates to the area of mathematics known as logic. 

Consider Axiom 1 from the Committee system.  Let’s omit it and see what kind of model we can come 

up with. 

Members Adam, Brian, Carla, Dana 

Committees 

{Adam, Brian} 

{Brian, Carla, Dana} 

{Adam, Carla} 

{Dana} 

Notice that we found a model where Axiom 1 is not true; we have committees that do not have exactly 

three members.  Since all of the other axioms are true in this model, then so is any statement that we 

could prove using those axioms.  But since Axiom 1 is not true, it follows that Axiom 1 is not provable 

from the other axioms. 

To prove that one axiom is independent from all of the others, find a model in which the axiom 

is false, but all of the other axioms are true. 

 Discussion Question.  Is Axiom 2 of the Committee system independent from Axioms 1, 3, and 

4? If it is, you should be able to come up with a model where Axiom 2 is false, but Axioms 1, 3, 

and 4 are all true. 
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Consistency 
If there is a model for an axiomatic system, then the system is called consistent.  Otherwise, the system 

is inconsistent.  In order to prove that a system is consistent, all we need to do is come up with a model: 

a definition of the undefined terms where the axioms are all true.  In order to prove that a system is 

inconsistent, we have to somehow prove that no such model exists (this is much harder!). 

The Silliness axiomatic system is an example of an inconsistent system.  Here is a proof of that fact.  If 

you find the language confusing, try replacing the word “dilly” with “element” and the word “silly” with 

“set.” 

Proof: Assume that there is a model for the Silliness axiomatic system.  By Axiom 2, there are four dillies.  

Let a be a dilly.  By Axiom 3, a is contained in a silly, which is a set of dillies.  By Axiom 1, this silly 

contains two other dillies, say b and c.  By Axiom 2, there is only one other dilly; we’ll call it d.  Now 

Axiom 3 tells us that d is contained in a silly, but it’s not contained in the silly {a, b, c}.  So d must be 

contained in a new silly.  By Axiom 1, this silly must contain three dillies.  But Axiom 4 prevents this new 

silly from containing a, b, or c.  Since these are the only dillies that there are, we have reached a 

contradiction.  The new silly must contain three dillies, but there is only one remaining.  

Completeness 
An axiomatic system is complete if every true statement can be proven from the axioms.  What does it 

mean for a statement to be true but not provable?  Consider this example: 

Twin Primes Conjecture: There are an infinite number of pairs of primes whose difference is 2. 

Some examples of “twin” primes are 3 and 5, 5 and 7, 11 and 13, 101 and 103, etc.  Computers have 

found very large pairs of twin primes, but so far no one has been able to prove this theorem.  It is 

possible that a proof will never be found.  In fact, in 2004, a proof was claimed to have been discovered, 

but a serious flaw in the proof was found and the problem remains unsolved. 

The Hilbert Program 
In 1900, a famous mathematician named David Hilbert set out a list of 23 unsolved mathematical 

problems to focus the direction of research in the 20th Century.  Many of these problems remain 

unsolved to this day.  Hilbert’s Second Problem challenged mathematicians to prove that mathematics 

itself could be reduced to a consistent set of axioms that was complete.  In other words, the problem 

was to find axioms from which all mathematical truths could be proven.   

In 1930, a mathematician named Kurt Gödel proved the Incompleteness Theorem.  Basically, the 

theorem says that in any “sufficiently complex” consistent axiomatic system, there must exist true 

statements that cannot be proven.  Here “sufficiently complex” basically means anything robust enough 

to be able to describe arithmetic (including addition and multiplication, prime numbers, divisibility, etc.). 

So Hilbert’s Second Problem was solved, but certainly not in the way he intended.  By Gödel’s theorem, 

we now know that mathematics necessarily contains true statements for which a proof can never be 

found.  
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Exercises 
Consider the following axiomatic system for Bus Routes. 

Undefined Terms: route, stop 

Axiom 1: Each route is a list of stops in a particular order.  These stops are called the stops 

visited by the route. 

Axiom 2: Each route visits at least four distinct stops. 

Axiom 3: No route visits the same stop twice, except for the first stop, which is always the same 

as the last stop. 

Axiom 4: There is a stop called downtown that is visited by each route. 

Axiom 5: Every stop other than downtown is visited by at most two routes. 

 

1. Construct a model of this system with three routes.  What is the fewest number of stops you can 

use? 

2. Your answer for Problem 1 shows that this system is … (choose one) 

(a) complete 

(b) consistent 

(c) inconsistent 

(d) independent 

3. Consider the following model.  Is it a model for the Bus Routes system?  If not, determine which 

axioms are satisfied by the model and which are not. 

Stops 

Downtown 

Wal-Mart 

Giant 

King St. 

Queen St. 

Sheetz 

CVS 

Routes 

Route 1: Downtown, Wal-Mart, King St., Queen St., Downtown 

Route 2: King St., Queen St., Sheetz, Giant, Downtown, King St. 

Route 3: Wal-Mart, King St., Downtown, Giant, King St., Wal-Mart 

4. Show that Axiom 3 is independent from the other axioms. 

5. Demonstrate that “There are exactly three routes” is not a theorem in this system by finding a 

model in which it is not true. 



Eucliean and Non-Euclidean Geometry – Fall 2007  Dr. Hamblin 

Possible Solutions 
1. Answers may vary.  You need at least 6 stops. 

2. (b) consistent. 

3. It is not a model for this system. 

 Axioms 1, 2, and 4 are satisfied. 

 Axiom 3 is not satisfied because Route 3 visits King St. twice and it is not the first/last stop. 

 Axiom 5 is not satisfied because all three routes visit King St. 

4. To do this, we must construct a model in which Axiom 3 is false but the other axioms are true.  

Answers may vary.  (Note that the model given in Problem 3 does not suffice, since both Axioms 

3 and 5 are false in that model.) 

5. Answers may vary.  Construct a model containing either more or fewer than three routes. 


